Pemphigus vulgaris and foliaceus are severe, sometimes life-threatening, autoimmune blistering skin diseases in which autoantibodies against desmoglein (Dsg) 3 and 1, desmosomal adhesion molecules, cause loss of keratinocyte cell adhesion. Ultimately, more specific treatments and diagnostic methods will require more detailed characterization of disease-causing autoantibodies. By determining the genetic properties and fine specificities of individual, i.e. monoclonal, antibodies (mAbs) from pemphigus patients, questions regarding common immunoglobulin variable segment gene usage, and shared pathogenic idiotypes and epitopes among patients can be addressed. A powerful molecular technology known as phage display will be used to clone and characterize human anti-Dsg autoantibodies. This technique will allow testing of the following hypotheses: a) mAbs against Dsg1 and Dsg3 from pemphigus patients are both pathogenic and non-pathogenic and both types can be isolated;b) There is genetically restricted heavy and light variable chain usage in anti-Dsg antibodies;c) Pathogenic mAbs bind a restricted set of epitopes at the amino terminus of Dsg3 and Dsg1;d) Pathogenic autoantibody idiotypes are shared among different patients;and e) Pathogenic idiotypes can be blocked by peptides mimicking the Dsg3 or Dsg1 pathogenic epitopes. Antibodies will be cloned from phage display libraries made from patients by selection on Dsg3 and Dsg1. The resulting human mAbs will be characterized by enzyme-linked immunosorbent assay, immunoflourescence and Western blotting. The mAbs will be tested for pathogenicity and then the genetics of the pathogenic and non-pathogenic antibodies will be compared. Phage peptide libraries will be screened with pathogenic mAbs. The respective epitopes on Dsgs will be mapped, and cross-reactive idiotypes (within and among patients) will be defined. The results of these experiments will greatly increase our knowledge of human autoantibodies in pemphigus. The project will: define how different human antibodies contribute to the pathology of this disease, develop valuable human monoclonal antibody reagents for other investigators studying these and other skin diseases, and will point to new ways to address targeted therapy and diagnosis to pathogenic antibodies in these potentially life-threatening diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR052672-05
Application #
7806492
Study Section
Arthritis, Connective Tissue and Skin Study Section (ACTS)
Program Officer
Cibotti, Ricardo
Project Start
2006-05-15
Project End
2011-06-30
Budget Start
2010-05-01
Budget End
2011-06-30
Support Year
5
Fiscal Year
2010
Total Cost
$331,815
Indirect Cost
Name
University of Pennsylvania
Department
Dermatology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Chen, Jing; Zheng, Qi; Hammers, Christoph M et al. (2017) Proteomic Analysis of Pemphigus Autoantibodies Indicates a Larger, More Diverse, and More Dynamic Repertoire than Determined by B Cell Genetics. Cell Rep 18:237-247
Yoshida, Kenji; Ishii, Ken; Shimizu, Atsushi et al. (2017) Non-pathogenic pemphigus foliaceus (PF) IgG acts synergistically with a directly pathogenic PF IgG to increase blistering by p38MAPK-dependent desmoglein 1 clustering. J Dermatol Sci 85:197-207
Hammers, Christoph M; Stanley, John R (2016) Mechanisms of Disease: Pemphigus and Bullous Pemphigoid. Annu Rev Pathol 11:175-97
Hammers, Christoph M; Chen, Jing; Lin, Chenyan et al. (2015) Persistence of anti-desmoglein 3 IgG(+) B-cell clones in pemphigus patients over years. J Invest Dermatol 135:742-749
Hammers, Christoph M; Stanley, John R (2014) Antibody phage display: technique and applications. J Invest Dermatol 134:1-5
Hammers, Christoph M; Stanley, John R (2013) Desmoglein-1, differentiation, and disease. J Clin Invest 123:1419-22
Toumi, Amina; Saleh, Marwah Adly; Yamagami, Jun et al. (2013) Autoimmune reactivity against precursor form of desmoglein 1 in healthy Tunisians in the area of endemic pemphigus foliaceus. J Dermatol Sci 70:19-25
Kouno, Michiyoshi; Lin, Chenyan; Schechter, Norman M et al. (2013) Targeted delivery of tumor necrosis factor-related apoptosis-inducing ligand to keratinocytes with a pemphigus mAb. J Invest Dermatol 133:2212-20
Lunardon, Luisa; Tsai, Kathleen J; Propert, Kathleen J et al. (2012) Adjuvant rituximab therapy of pemphigus: a single-center experience with 31 patients. Arch Dermatol 148:1031-6
Amagai, Masayuki; Stanley, John R (2012) Desmoglein as a target in skin disease and beyond. J Invest Dermatol 132:776-84

Showing the most recent 10 out of 18 publications