The long-term goals of this project are to determine how the dysregulation of organelle membrane lipid biosynthesis and maintenance leads to a congenital muscular dystrophy (CMD), how we can successfully design strategies to treat this disorder, and how this disease mechanism can inform upon other types of muscular dystrophy. We first identified PC homeostasis as critical for skeletal muscle maintenance in the rostrocaudal muscular dystrophy (rmd) mutant mouse, and later in human CMD patients with loss of function mutations in the choline kinase beta (CHKB) gene. CHKB is one of two mammalian enzymes catalyzing the phosphorylation of choline to phosphocholine in the Kennedy pathway. Loss of CHKB activity results in significantly reduced skeletal muscle PC levels and a progressive muscular dystrophy phenotype with nuclear membrane dysmorphology and distinctly enlarged mitochondria (megamitochondria) with reduced respiratory function. We hypothesize that alterations in membrane PC content directly affect the functional properties of skeletal muscle organelles (nuclei and mitochondria) and that a strategy to restore membrane PC levels will be therapeutically beneficial.
In aim 1, we will define the mechanisms regulating mitochondrial and nuclear dysfunction. We propose to a) determine if PC deficiency disrupts mitochondrial fission at points of ER/mitochondrial contact, b) define mechanisms regulating mitochondrial fission/fusion using high-resolution FPALM microscopy to test the real-time dynamics of mitochondrial membrane curvature changes, and c) determine if nuclear membrane changes are functionally related to those seen in LMNA Emery-Dreifuss MD.
In aim 2, we will test therapeutic strategies by a) determining if CHK-alpha (CHKA) can substitute for CHKB deficiency using a transgenic approach, b) testing if overexpression of mitochondrial fission proteins, or knockout of mitochondrial fusion proteins can alleviate the megamitochondrial disease phenotype, and c) testing if PC or an intermediate metabolite can be administered therapeutically to restore phospholipid homeostasis.

Public Health Relevance

Alterations in cell and organelle membrane morphology and function have been shown to be key to a variety of human diseases, including muscular, neurological, and metabolic disorders. Our discovery of choline kinase beta (Chkb) mutations in the rmd mouse, and in a recently identified human congenital muscular dystrophy with null mutations in the CHKB gene, are the first indications that altered phospholipid synthesis can result in mitochondrial and nuclear membrane defects in muscle disease. The development of our proposed mitochondrial photoactivatable myoblast cell line, and our use of high-resolution FPALM microscopy to study the impact of membrane composition and architecture and muscular disease, will be a vital component for further understanding of the role of membrane phospholipids in a wide range of human illnesses.

National Institute of Health (NIH)
Research Project (R01)
Project #
Application #
Study Section
Skeletal Muscle Biology and Exercise Physiology Study Section (SMEP)
Program Officer
Boyce, Amanda T
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Jackson Laboratory
Bar Harbor
United States
Zip Code
Li, Zhuo; Wu, Gengshu; Sher, Roger B et al. (2014) Choline kinase beta is required for normal endochondral bone formation. Biochim Biophys Acta 1840:2112-22
Hosur, Vishnu; Cox, Melissa L; Burzenski, Lisa M et al. (2013) Retrotransposon insertion in the T-cell acute lymphocytic leukemia 1 (Tal1) gene is associated with severe renal disease and patchy alopecia in Hairpatches (Hpt) mice. PLoS One 8:e53426
Strokin, Mikhail; Seburn, Kevin L; Cox, Gregory A et al. (2012) Severe disturbance in the Ca2+ signaling in astrocytes from mouse models of human infantile neuroaxonal dystrophy with mutated Pla2g6. Hum Mol Genet 21:2807-14
Mitsuhashi, Satomi; Hatakeyama, Hideyuki; Karahashi, Minako et al. (2011) Muscle choline kinase beta defect causes mitochondrial dysfunction and increased mitophagy. Hum Mol Genet 20:3841-51
Mitsuhashi, Satomi; Ohkuma, Aya; Talim, Beril et al. (2011) A congenital muscular dystrophy with mitochondrial structural abnormalities caused by defective de novo phosphatidylcholine biosynthesis. Am J Hum Genet 88:845-51