The Hedgehog pathway is one of the fundamental means of controlling mammalian cell behavior and is used to regulate a wide variety of disparate biological events including tissue patterning, stem cell renewal, and cell proliferation. All Hedgehog signaling in organisms ranging from Drosophila to mice relies on the proto-oncogene Smoothened, mutations in which can cause basal cell carcinoma, the most common cancer in North America, and medulloblastoma, the most common solid cancer among children. Despite its importance to both development and disease, the molecular mechanism by which Smoothened functions remains unclear. We have recently discovered that mammalian Hedgehog signals move Smoothened to an organelle called the primary cilium, and that this movement is necessary for Smoothened activity. Although it is known that almost all mammalian cells possess a single primary cilium that extends into the extracellular environment, the functions of this organelle are poorly understood. We propose that the primary cilium acts as a cellular antenna, through which Hedgehog signals are transduced. We seek to build on these findings to investigate how Smoothened acts at the cilium and whether cilia participate in Smoothened-mediated cancer development. Specifically, we will answer four questions: 1) How is the transport of Smoothened to the primary cilium regulated? 2) How does Smoothened activate its pathway at the cilium? 3) Is Smoothened localization misregulated in cancer? 4) Are primary cilia required for Smoothened-mediated oncogenesis? The proposed experiments use genetic, molecular, and biochemical approaches to answer these questions in normal cells, human tumors, and mouse cancer models. This work will both elucidate the mechanism of Smoothened regulation, and assess the function of primary cilia in development and neoplasia. Taken together, these studies will provide a biochemical and cell biological understanding of how Smoothened and the primary cilium regulate Hedgehog signal transduction both in development and in disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR054396-07
Application #
8500569
Study Section
Development - 1 Study Section (DEV1)
Program Officer
Baker, Carl
Project Start
2007-07-15
Project End
2014-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
7
Fiscal Year
2013
Total Cost
$293,915
Indirect Cost
$103,679
Name
University of California San Francisco
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Kopinke, Daniel; Roberson, Elle C; Reiter, Jeremy F (2017) Ciliary Hedgehog Signaling Restricts Injury-Induced Adipogenesis. Cell 170:340-351.e12
Sigg, Monika Abedin; Menchen, Tabea; Lee, Chanjae et al. (2017) Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Dev Cell 43:744-762.e11
Shi, Xiaoyu; Garcia 3rd, Galo; Van De Weghe, Julie C et al. (2017) Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat Cell Biol 19:1178-1188
Phua, Siew Cheng; Chiba, Shuhei; Suzuki, Masako et al. (2017) Dynamic Remodeling of Membrane Composition Drives Cell Cycle through Primary Cilia Excision. Cell 168:264-279.e15
Garcia-Gonzalo, Francesc R; Reiter, Jeremy F (2017) Open Sesame: How Transition Fibers and the Transition Zone Control Ciliary Composition. Cold Spring Harb Perspect Biol 9:
Dinsmore, Colin; Reiter, Jeremy F (2016) Endothelial primary cilia inhibit atherosclerosis. EMBO Rep 17:156-66
Jayaraman, Divya; Kodani, Andrew; Gonzalez, Dilenny M et al. (2016) Microcephaly Proteins Wdr62 and Aspm Define a Mother Centriole Complex Regulating Centriole Biogenesis, Apical Complex, and Cell Fate. Neuron 92:813-828
Li, Chunmei; Jensen, Victor L; Park, Kwangjin et al. (2016) MKS5 and CEP290 Dependent Assembly Pathway of the Ciliary Transition Zone. PLoS Biol 14:e1002416
Garcia 3rd, Galo; Reiter, Jeremy F (2016) A primer on the mouse basal body. Cilia 5:17
Zhang, Xiaochang; Chen, Ming Hui; Wu, Xuebing et al. (2016) Cell-Type-Specific Alternative Splicing Governs Cell Fate in the Developing Cerebral Cortex. Cell 166:1147-1162.e15

Showing the most recent 10 out of 43 publications