This competing renewal application for the grant, """"""""Model Systems for PXE"""""""" (AR R0155225) revolves around pseudoxanthoma elasticum (PXE), the paradigm of heritable aberrant mineralization disorders, manifesting in the skin, eyes, and the cardiovascular system with considerable morbidity and mortality. PXE is caused by mutations in the ABCC6 gene, encoding an efflux transporter expressed primarily in the liver. Our recent data, based primarily on experimentation on Abcc6-/- mice, which serve as a model for PXE, have suggested that PXE is a metabolic disorder at the genome/environment interface. One of the clinical features of PXE is considerable intra- and interfamilial heterogeneity. Our previous attempts to establish direct genotype/phenotype correlations in a cohort of ~300 patients have been unsuccessful, suggesting phenotypic modulation by genetic and environmental factors. This application has two specific areas of investigation. The first one focuses on identification of phenotypic modifier genes by mouse genomics through quantitative trait loci analysis. These analyses take advantage of our recent discovery of four inbred mouse strains that harbor the same ABCC6 mutation in their genome, yet the phenotypic expression is highly variable. These mouse strains, in the context of Abcc6-/- mice and their wild- type counterparts, will be used to set up informative crosses which will be analyzed for mineralization phenotypes and scanned for quantitative trait loci by genotyping analysis. The identified candidate genes for modulation of PXE phenotype will be verified by functional assays and by tissue array expression profiles. Our studies will also focus on a specific mutant mouse, Enpp1-/-, which we have recently developed as a model for a severe ectopic mineralization disorder, generalized arterial calcification of infancy, with overlapping clinical features of PXE. The Enpp1-/- mice will be crossed with Abcc6-/- mice, and the developed colonies with double heterozygous as well as homozygous/heterozygous compound mutations will be analyzed for phenotypic modulation. The second area of investigation will focus on identification of consequences of missense mutations in the ABCC6 gene, particularly with respect to loss of functional transporter activity (assayed by an insect cell, Sf9, inside-out vesicle system) and intracellular trafficking of the mutant protein in the liver (as assessed in an in vivo mouse perfusion system). The pathogenic nature of missense mutations will also be verified in a novel zebrafish morpholino knock-down system. Finally, we will attempt the identification of the molecule(s) physiologically transported by ABCC6, by a number of approaches. Collectively, these studies are designed to identify genetic factors that contribute to the pathomechanistic details leading from mutations in the ABCC6 gene to ectopic mineralization of peripheral tissues and to identify specific steps amenable to pharmacologic intervention towards treatment of this, currently intractable disease.

Public Health Relevance

This application proposes to identify genetic factors which contribute to phenotypic variability in pseudoxanthoma elasticum, a heritable ectopic mineralization disorder with considerable morbidity and mortality. The studies are expected to identify specific pathomechanistic pathways that can be interfered by pharmacologic means, thus providing novel treatment modalities for this, currently intractable group of diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR055225-07
Application #
8735605
Study Section
Arthritis, Connective Tissue and Skin Study Section (ACTS)
Program Officer
Tseng, Hung H
Project Start
2007-07-01
Project End
2018-08-31
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Thomas Jefferson University
Department
Type
Schools of Medicine
DUNS #
City
Philadelphia
State
PA
Country
United States
Zip Code
19107
Zhang, Jieyu; Dyment, Nathaniel A; Rowe, David W et al. (2016) Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice. Oncotarget 7:12000-9
Li, Qiaoli; Kingman, Joshua; Sundberg, John P et al. (2016) Dual Effects of Bisphosphonates on Ectopic Skin and Vascular Soft Tissue Mineralization versus Bone Microarchitecture in a Mouse Model of Generalized Arterial Calcification of Infancy. J Invest Dermatol 136:275-83
Li, Qiaoli; Berndt, Annerose; Sundberg, Beth A et al. (2016) Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11, and 15 for age-related cardiac fibrosis. Mamm Genome 27:179-90
Li, Qiaoli; Kingman, Joshua; Uitto, Jouni (2015) Mineral content of the maternal diet influences ectopic mineralization in offspring of Abcc6(-/-) mice. Cell Cycle 14:3184-9
Kiss, Katalin; Kucsma, Nora; Brozik, Anna et al. (2015) Role of the N-terminal transmembrane domain in the endo-lysosomal targeting and function of the human ABCB6 protein. Biochem J 467:127-39
Jin, Liang; Jiang, Qiujie; Wu, Zhengsheng et al. (2015) Genetic heterogeneity of pseudoxanthoma elasticum: the Chinese signature profile of ABCC6 and ENPP1 mutations. J Invest Dermatol 135:1294-302
Li, Qiaoli; Sundberg, John P; Levine, Michael A et al. (2015) The effects of bisphosphonates on ectopic soft tissue mineralization caused by mutations in the ABCC6 gene. Cell Cycle 14:1082-9
Sundberg, John P; Dadras, Soheil S; Silva, Kathleen A et al. (2015) Excavating the Genome: Large-Scale Mutagenesis Screening for the Discovery of New Mouse Models. J Investig Dermatol Symp Proc 17:27-9
Li, Qiaoli; Kingman, Joshua; Sundberg, John P et al. (2015) Dual Effects of Bisphosphonates on Ectopic Skin and Vascular Soft Tissue Mineralization versus Bone Microarchitecture in a Mouse Model of Generalized Arterial Calcification of Infancy. J Invest Dermatol :
Sundberg, John P; McElwee, Kevin; Brehm, Michael A et al. (2015) Animal Models for Alopecia Areata: What and Where? J Investig Dermatol Symp Proc 17:23-6

Showing the most recent 10 out of 58 publications