Bone remodeling is a sequence of events in which osteoclastic resorption is coupled to osteoblast-driven formation. Resorption releases Ca2+, matrix proteins, growth factors, and signaling molecules into the microenvironment. Cells in bone and marrow respond to fluxes in the [Ca2+]e which initiate signaling cascades. In osteoblasts, changes in the [Ca2+]e affect expression of genes critical for matrix production and mineralization, chemotaxis, and proliferation. Considerable evidence supports the idea that changes in the [Ca2+]e couple to the activation of CaRs. CaRs are known to control PTH secretion, parathyroid cell growth, and renal Ca2+ and water handling. These aspects of CaR physiology were confirmed in the original (global) CaR knockout mouse developed by Ho et al in 1995. This knockout was generated by a targeting strategy that was later learned to allow for the production of alternatively spliced CaRs that are in fact expressed in bone, marrow, cartilage, skin and other cells. Thus, to understand the role of CaRs in bone cells and skeletal homeostasis in vivo, a different knockout model is needed -- one that selectively targets bone cell populations (conditional knockout) and that does not allow for the formation of any membrane-anchored, signaling-competent CaRs. Our laboratory recently developed a novel floxed CaR mouse that meets these specifications. We propose to use this model and osteoblast- specific Tg mice expressing Cre recombinase under the control of specific bone promoters (type 1 collagen, osteocalcin, osterix, dentin matrix protein 1) to develop conditional knockouts of the CaR targeted to bone cell populations at different stages of differentiation. We will test the hypothesis that CaRs mediate high [Ca2+]e-induced signaling and changes in differentiation, gene expression, and mineralization in osteoblasts, that CaRs act at specific points temporally in bone development, and that CaR activation mediates its effects at least partly via the Wnt/?-catenin pathway.
Our aims are (1) to determine the role of the CaR in the growth and differentiation of cells in the osteoblastic lineage by analyzing mice with conditional deletion of the CaR at temporally different points in osteoblastic development;and (2) to determine whether cellular and phenotypic features of knocking-out the CaR in osteoblasts are mediated via Wnt/?-catenin signaling. Skeletal phenotypes in vivo will be characterized by in vivo micro-CT, histomorphometry, biochemical markers of turnover, and serum chemistry and hormonal parameters. Cells from these animals will be cultured to determine the key genes and signaling pathways affected. These studies should lay the groundwork for developing therapeutics targeted to CaRs in different bone cell populations as a means to treat disorders of low bone formation and excessive remodeling such as osteoporosis, hyperparathyroidism, and bone metastases.

Public Health Relevance

Calcium-sensing receptors are molecules on the membranes of cells that sense the level of calcium in the environment and communicate this information to the inside of the cell. Fluctuations in the concentration of calcium act as a signal to bone cells that cause them to change their responses and their activities. The goal of this proposal is to figure out what calcium is doing in bone cells by removing calcium-sensing receptors selectively from the different types of cells in bone in a mouse model, to better understand bone metabolism and bone diseases, and to find more effective treatments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR055588-04
Application #
8255611
Study Section
Skeletal Biology Development and Disease Study Section (SBDD)
Program Officer
Chen, Faye H
Project Start
2009-07-10
Project End
2014-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
4
Fiscal Year
2012
Total Cost
$331,452
Indirect Cost
$117,612
Name
Northern California Institute Research & Education
Department
Type
DUNS #
613338789
City
San Francisco
State
CA
Country
United States
Zip Code
94121
Shah, Arti D; Hsiao, Edward C; O'Donnell, Betsy et al. (2015) Maternal Hypercalcemia Due to Failure of 1,25-Dihydroxyvitamin-D3 Catabolism in a Patient With CYP24A1 Mutations. J Clin Endocrinol Metab 100:2832-6
Hindi, Sahar M; Wang, Yongmei; Jones, Kirk D et al. (2015) A Case of Hypercalcemia and Overexpression of CYP27B1 in Skeletal Muscle Lesions in a Patient with HIV Infection After Cosmetic Injections with Polymethylmethacrylate (PMMA) for Wasting. Calcif Tissue Int 97:634-9
Schafer, Anne L; Mumm, Steven; El-Sayed, Ivan et al. (2014) Panostotic expansile bone disease with massive jaw tumor formation and a novel mutation in the signal peptide of RANK. J Bone Miner Res 29:911-21
Cheng, Zhiqiang; Liang, Nathan; Chen, Tsui-Hua et al. (2013) Sex and age modify biochemical and skeletal manifestations of chronic hyperparathyroidism by altering target organ responses to Ca2+ and parathyroid hormone in mice. J Bone Miner Res 28:1087-100
Park-Sigal, Jennifer; Don, Burl R; Porzig, Anne et al. (2013) Severe hypercalcemic hyperparathyroidism developing in a patient with hyperaldosteronism and renal resistance to parathyroid hormone. J Bone Miner Res 28:700-8
Schafer, Anne L; Sellmeyer, Deborah E; Palermo, Lisa et al. (2012) Six months of parathyroid Hormone (1-84) administered concurrently versus sequentially with monthly ibandronate over two years: the PTH and ibandronate combination study (PICS) randomized trial. J Clin Endocrinol Metab 97:3522-9
Dvorak-Ewell, Melita M; Chen, Tsui-Hua; Liang, Nathan et al. (2011) Osteoblast extracellular Ca2+ -sensing receptor regulates bone development, mineralization, and turnover. J Bone Miner Res 26:2935-47
Dong, Qing; Cheng, Zhiqiang; Chang, Wenhan et al. (2010) Naturally-occurring mutation in the calcium-sensing receptor reveals the significance of extracellular domain loop III region for class C G-protein-coupled receptor function. J Clin Endocrinol Metab 95:E245-52