Bone homeostasis in the adult or aging skeleton, is perturbed by mechanisms that involve decreased defense against oxidative stress and/or increased production of Reactive Oxygen Species (ROS). Remarkably, several molecules that regulate the organism's response to oxidative stress are also shared by signaling cascades that lead to prolongation of lifespan. In bone, and in any other tissue, a variety of metabolic reactions and exogenous agents generate ROS that can damage cellular constituents. Cells counteract the adverse effects of ROS by mechanisms that involve dephosphorylation and subsequent activation of a family of ubiquitous transcription factors known as FOXOs. FOXO1, one of the three FOXO homologs, regulates cell differentiation, promotes either cell survival or apoptosis;and also increases lifespan in model biologic systems. Cellular fate in response to FOXO1 dephosphorylation depends on Sirtuins. Sirtuins are NAD-dependent protein deacetylases which attenuate stress-induced apoptosis and extend lifespan in flies, worms and mammals. The mammalian homolog SIRT1, deacetylates FOXO1, thus shifting FOXO-dependent responses away from cell death and towards cell survival. We have found that FOXO1 and SIRT1 exert direct anti-apoptotic or proliferative effects on osteoblasts and osteoblast precursors. They are also expressed in osteoclasts. SIRT1-dependent deacetylation of FOXO1 is required for its anti-apoptotic effects. Most importantly, FOXO1 haploinsufficiency decreases bone mass and compromises bone microarchitecture in adult mice. Deletion of FOXO1 from osteoblasts results in reduction in osteoblast numbers without affecting osteoclast numbers. Conversely, transgenic mice expressing SIRT1 show enhanced deacetylation of FOXO1 in bone, increased bone mass in the spine and femur and increased osteoblast but decreased osteoclast numbers. Finally, FOXO1 physically associates with ?-catenin, a key component of the Wnt signaling pathway, to form a functional complex. Oxidative stress increases FOXO1-mediated transcription of anti-oxidant enzymes;and attenuates both the anti-osteoclastogenic and the osteoblastogenic effects of ?-catenin-mediated transcription in cells of the osteoblastic lineage. In studies to be conducted in this proposal, we will test the hypothesis that SIRT1/FOXO1 signaling is activated in response to physiological levels of oxidative stress to protect bone mass and preserve bone homeostasis. An interaction between this pathway and ?-catenin may enhance FOXO1-mediated transcription and/or regulate the anti-osteoclastogenic properties of ?-catenin. In this proposal we will determine the role of FOXO1 in osteoblast function. We will also elucidate the role of SIRT1 by itself or as an activator of FOXO1 signaling in bone. Finally, we will examine whether FOXO1 regulates the anti-osteoclastogenic actions of ?-catenin. These studies will provide for the first time a link between pathways that regulate oxidative stress, longevity and skeletal homeostasis under the control of the Sirtuin/FOXO system. Treatment modalities aimed at restoring FOXO deacetylation and phosphorylation may form the basis for a novel approach to osteoporosis therapy.

Public Health Relevance

. In bone, and in any other tissue, a variety of metabolic reactions and exogenous agents generate Reactive Oxygen Species (ROS) that can damage cellular constituents. Cells counteract the adverse effects of ROS by mechanisms that involve the NAD-dependent protein deacetylase SIRT1 and the transcription factor FOXO1;both of which extend lifespan in flies, worms or mammals. We will test the hypothesis that SIRT1/FOXO1 signaling is activated in response to physiological levels of oxidative stress to protect bone mass and preserve bone homeostasis. An interaction between this pathway and 2-catenin may enhance FOXO1-mediated transcription and regulate the anti-osteoclastogenic properties of 2-catenin.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR055931-03
Application #
7809578
Study Section
Skeletal Biology Structure and Regeneration Study Section (SBSR)
Program Officer
Sharrock, William J
Project Start
2008-09-15
Project End
2013-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
3
Fiscal Year
2010
Total Cost
$349,133
Indirect Cost
Name
Columbia University (N.Y.)
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Mosialou, Ioanna; Shikhel, Steven; Liu, Jian-Min et al. (2017) MC4R-dependent suppression of appetite by bone-derived lipocalin 2. Nature 543:385-390
Kode, A; Mosialou, I; Manavalan, S J et al. (2016) FoxO1-dependent induction of acute myeloid leukemia by osteoblasts in mice. Leukemia 30:1-13
Kode, Aruna; Manavalan, John S; Mosialou, Ioanna et al. (2014) Leukaemogenesis induced by an activating ?-catenin mutation in osteoblasts. Nature 506:240-4
Krevvata, Maria; Silva, Barbara C; Manavalan, John S et al. (2014) Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts. Blood 124:2834-46
Kode, Aruna; Mosialou, Ioanna; Silva, Barbara C et al. (2012) FOXO1 orchestrates the bone-suppressing function of gut-derived serotonin. J Clin Invest 122:3490-503
Kode, Aruna; Mosialou, Ioanna; Silva, Barbara C et al. (2012) FoxO1 protein cooperates with ATF4 protein in osteoblasts to control glucose homeostasis. J Biol Chem 287:8757-68
DiGirolamo, Douglas J; Clemens, Thomas L; Kousteni, Stavroula (2012) The skeleton as an endocrine organ. Nat Rev Rheumatol 8:674-83
Kousteni, Stavroula (2012) FoxO1, the transcriptional chief of staff of energy metabolism. Bone 50:437-43
Yoshikawa, Yoshihiro; Kode, Aruna; Xu, Lili et al. (2011) Genetic evidence points to an osteocalcin-independent influence of osteoblasts on energy metabolism. J Bone Miner Res 26:2012-25
Rached, Marie-Therese; Kode, Aruna; Silva, Barbara C et al. (2010) FoxO1 expression in osteoblasts regulates glucose homeostasis through regulation of osteocalcin in mice. J Clin Invest 120:357-68

Showing the most recent 10 out of 11 publications