In damaged skin, regeneration is not the same as filling and resurfacing. Healing by scarring results from the faulty, exuberant reconstruction of the dermal architecture and the formation of an epidermis lacking appendages. The overriding hypothesis of this multi-investigator proposal is that the MRL/MpJ mouse, in which ear wounds regenerate, expresses proteins during wound healing that favor regeneration. This concept is bolstered by our recently published work and our current findings that the MRL wound proteome has distinct differences from other mouse strains. We have published evidence that the bone marrow is a rich source of wound fibroblasts, and mesenchymal stem cells (MSC) from the MRL mouse enhance healing due in part to elevated sFRP-1. The first goal is to identify the key proteomic differences between regenerating and non-regenerating wounds within the MRL and between strains, using a novel, precise surgical method with the free-electron laser. Analysis will be accomplished with state of the art, high-resolution proteomic techniques and verified by immunohistochemistry. The second goal is to determine how the migration and differentiation of several stem cell populations is affected by known and newly-identified, regeneration-specific factors in a novel, microfluidic device that can generate complex, two-dimensional concentration gradients. Further validation will use novel wound chambers. The third goal is to build a scaffold, based on a novel polyurethane chemistry, to provide a three-dimensional environment into which factors that recruit stem cells or promote stem cell activity can be released, under controlled conditions, to drive a regenerative response in skin that normally heals by scarring. The project will test known candidates and then those newly identified. The key criteria for regeneration will be restoration of connective tissue architecture, including the formation of functional elastic fibers and the initiation of hair follicle formation. The translational outcome of this joint venture will be the identification of regeneration-promoting molecules, the use of bone marrow-derived cells to promote regeneration, the development of a new device for studying cell behavior, and the production of a bioactive scaffold for recruitment, differentiation, and delivery of morphogens that promote fully functional repair. This will be accomplished by the collaboration of a seasoned team of investigators with expertise in tissue analysis, proteomics, stem cell biology, microfluidics, and polymer chemistry.

Public Health Relevance

Wounds and burns frequently scar and fail to regenerate the original architecture of the skin. Certain strains of mice heal skin much better in some regions of their body, and part of this may be due to differences in their circulating stem cells or the way they are recruited to the wound. This is a study to identify the cell signals that differ between normal healing and regeneration, to see how they affect the behavior of stem cells, and to devise a temporary, synthetic scaffold that can deliver these regenerative signals to restore skin structure and function.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR056138-05
Application #
8508674
Study Section
Musculoskeletal Tissue Engineering Study Section (MTE)
Program Officer
Tseng, Hung H
Project Start
2009-09-01
Project End
2014-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
5
Fiscal Year
2013
Total Cost
$601,177
Indirect Cost
$213,853
Name
Vanderbilt University Medical Center
Department
Pathology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Prieto, Edna M; Page, Jonathan M; Harmata, Andrew J et al. (2014) Injectable foams for regenerative medicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:136-54
Baquerizo Nole, Katherine L; Yim, Elizabeth; Van Driessche, Freya et al. (2014) Wound research funding from alternative sources of federal funds in 2012. Wound Repair Regen 22:295-300
Adolph, Elizabeth J; Nelson, Christopher E; Werfel, Thomas A et al. (2014) Enhanced Performance of Plasmid DNA Polyplexes Stabilized by a Combination of Core Hydrophobicity and Surface PEGylation. J Mater Chem B Mater Biol Med 2:8154-8164
Martin, John R; Gupta, Mukesh K; Page, Jonathan M et al. (2014) A porous tissue engineering scaffold selectively degraded by cell-generated reactive oxygen species. Biomaterials 35:3766-76
Nelson, Christopher E; Kim, Arnold J; Adolph, Elizabeth J et al. (2014) Tunable delivery of siRNA from a biodegradable scaffold to promote angiogenesis in vivo. Adv Mater 26:607-14, 506
Davidson, Jeffrey M (2014) Proteomic revelations. J Invest Dermatol 134:2301-2
Adolph, Elizabeth J; Pollins, Alonda C; Cardwell, Nancy L et al. (2014) Biodegradable lysine-derived polyurethane scaffolds promote healing in a porcine full-thickness excisional wound model. J Biomater Sci Polym Ed 25:1973-85
Alfaro, Maria P; Deskins, Desirae L; Wallus, Meredith et al. (2013) A physiological role for connective tissue growth factor in early wound healing. Lab Invest 93:81-95
Hines, Kelly M; Ashfaq, Samir; Davidson, Jeffrey M et al. (2013) Biomolecular signatures of diabetic wound healing by structural mass spectrometry. Anal Chem 85:3651-9
Lee, Baek-Hee; Li, Bing; Guelcher, Scott A (2012) Gel microstructure regulates proliferation and differentiation of MC3T3-E1 cells encapsulated in alginate beads. Acta Biomater 8:1693-702

Showing the most recent 10 out of 16 publications