Anterior cruciate ligament (ACL) injury is a major medical and financial burden. Despite identification of modifiable risk factors and effective preventive measures, global ACL injury incidence remains largely unaffected. Under the parent grant we identified plausible valgus collapse mechanisms for ACL injury without concomitant medial collateral ligament (MCL) injury. A novel cadaveric testing setup we developed under the funded grant has demonstrated a nearly 90% rate of ACL tear. Our findings show that combined knee abduction moment (KAM), anterior tibial shear force (ATS) and internal tibial rotation moment (ITR) generates significantly greater strain in the ACL relative to the MCL, and reproduces kinematics similar to those observed during ACL injury. While these types of loading, in isolation, increase ACL strain and potentially risk of injury, their combined effects on ACL biomechanics are not well understood. In this competing renewal application we will develop a highly impactful and unique ACL injury risk assessment protocol that accounts for multiplanar biomechanics. The protocol will be developed through a novel, integrative in vivo, in vitro and in silico (in sim) approach.
The Specific Aims are: I) To develop and validate a multiplanar ACL injury risk assessment algorithm that predicts ACL injury risk based on dynamic ACL strain, and II) To integrate in vivo, in vitro and in silico approaches to establish a 'continuum of risk'that accounts for the relative contributions of KAM, ITR, and ATS to ACL rupture. The critical distinction between the two Aims is the biomechanical context:
Aim I will determine how the ACL is strained during non-injurious screening tasks that can be performed in a laboratory or clinical setting.
Aim II will establish a direct link between high strain movement patterns and the ACL injury mechanism(s). We hypothesize that: I) Peak input values of KAM, ITR, and ATS from in vivo data will accurately predict peak ACL strain when landing biomechanics are reproduced in vitro and in silico, and II) Incremental increases in KAM, ITR and ATS, scaled from 'high-risk'in vivo measures will lead to ACL rupture in vitro and in silico.
In Specific Aim I, multi-planar kinematics and kinetics will be directly used as inputs to our validated, sex-specific, viscoelastic FE knee models and in vitro test protocols to test our hypotheses. We will also aim to identify and validate simple, clinically-based predictors for KAM, ITR, and ATS to maximize the clinical applicability of the protocol.
In Aim II, we will directly examine the roles of KAM, ITR and anterior tibial shear on the likelihood of ACL rupture. High-risk in vivo values for KAM, ATS, and ITR will be incrementally increased until tissue failure is achieved in cadavers, or ACL failure strains are reached in FE models. Furthermore, in Aim II we will optimize our FE modeling approach through validation of a methodology to customize models that accounts for variability in anatomy and tissue mechanics. This research will significantly improve the ability of researchers and clinicians to effectively screen athletes for ACL injury risk, and will increase ACL injury prevention program enrollment and efficacy.

Public Health Relevance

The proposed series of experiments will use live human subjects, cadaveric knees and computer biomechanical models to develop a state-of-the-art knee injury risk analysis tool. This tool will predict knee ligament strain during simulated athletc tasks, and will predict relative anterior cruciate ligament (ACL) injury risk in individuals. The synergy of these techniques will lead to the first scientific study to link high-risk biomechanics, especially in injury prone athletes, to the actual mechanism(s) of ACL injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
2R01AR056259-05A1
Application #
8651985
Study Section
Special Emphasis Panel (ZRG1-MOSS-C (02))
Program Officer
Panagis, James S
Project Start
2008-07-01
Project End
2018-08-31
Budget Start
2013-09-16
Budget End
2014-08-31
Support Year
5
Fiscal Year
2013
Total Cost
$609,721
Indirect Cost
$111,676
Name
Ohio State University
Department
Physiology
Type
Schools of Medicine
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Bates, Nathaniel A; Myer, Gregory D; Hewett, Timothy E (2015) Prediction of kinematic and kinetic performance in a drop vertical jump with individual anthropometric factors in adolescent female athletes: implications for cadaveric investigations. Ann Biomed Eng 43:929-36
Hall, Randon; Barber Foss, Kim; Hewett, Timothy E et al. (2015) Sport specialization's association with an increased risk of developing anterior knee pain in adolescent female athletes. J Sport Rehabil 24:31-5
Myer, Gregory D; Ford, Kevin R; Di Stasi, Stephanie L et al. (2015) High knee abduction moments are common risk factors for patellofemoral pain (PFP) and anterior cruciate ligament (ACL) injury in girls: is PFP itself a predictor for subsequent ACL injury? Br J Sports Med 49:118-22
Bates, Nathaniel A; McPherson, April L; Rao, Marepalli B et al. (2014) Characteristics of inpatient anterior cruciate ligament reconstructions and concomitant injuries. Knee Surg Sports Traumatol Arthrosc :
Kiapour, Ata M; Kaul, Vikas; Kiapour, Ali et al. (2014) The Effect of Ligament Modeling Technique on Knee Joint Kinematics: A Finite Element Study. Appl Math (Irvine) 4:91-97
Barber Foss, Kim D; Myer, Greg D; Hewett, Timothy E (2014) Epidemiology of basketball, soccer, and volleyball injuries in middle-school female athletes. Phys Sportsmed 42:146-53
Myer, Gregory D; Barber Foss, Kim D; Gupta, Resmi et al. (2014) Analysis of patient-reported anterior knee pain scale: implications for scale development in children and adolescents. Knee Surg Sports Traumatol Arthrosc :
Roewer, Benjamin D; Ford, Kevin R; Myer, Gregory D et al. (2014) The 'impact' of force filtering cut-off frequency on the peak knee abduction moment during landing: artefact or 'artifiction'? Br J Sports Med 48:464-8
Sugimoto, Dai; Myer, Gregory D; Foss, Kim D Barber et al. (2014) Dosage effects of neuromuscular training intervention to reduce anterior cruciate ligament injuries in female athletes: meta- and sub-group analyses. Sports Med 44:551-62
Patel, Sonika A; Hageman, Jason; Quatman, Carmen E et al. (2014) Prevalence and location of bone bruises associated with anterior cruciate ligament injury and implications for mechanism of injury: a systematic review. Sports Med 44:281-93

Showing the most recent 10 out of 68 publications