Alopecia areata (AA) is a disfiguring human autoimmune skin disease with a complex genetic basis that targets hair follicles in the actively growing anagen phase and is often associated with other systemic autoimmune diseases. Psychogenic trauma due to hair loss, particularly for teen-aged girls, can be so serious as to lead to suicide. AA can affect up to 2% of the general population at some time during their lives (6,000,000 US citizens). C3H/HeJ mice spontaneously develop AA and, like in humans, this is a very complex polygenic disease with susceptibility loci in common with both human AA patients and the rat AA model. Our previous hypothesis was that AA was due to the interaction of immune-regulatory genes affecting pathways that can be identified by systematic analysis of gene expression levels within each quantitative trait locus (QTL) interval previously identified. While this idea remains viable, we have now identified genes within these QTLs which go beyond immune regulatory genes towards explaining many of the key issues in the pathogenesis of this extremely complicated disease. Gene array data from a cross sectional AA study (completed, including mice with spontaneous disease), when combined with quantitative real time RT PCR (QPCR) for all genes within each of the 4 AA quantitative trait loci (QTLs) and haplotype mapping data based on total genomic sequencing (Sanger draft sequences), will be used to identify numerous candidate genes involved in the pathogenesis of AA that will allow for prioritization of molecular pathways for future intervention trials. To validate this work we will use a prototype mouse AA-specific QPCR 384 gene array (completed) to provide expression based phenotyping capabilities, adding Expression-based Quantitative Trait Locus (EQTL) analytical methods to analyze new genetic crosses. By evaluating mice that develop AA in the separate aging of Collaborative Cross mice (nearly 200 carefully genotyped novel mouse strains that provide expanded genetic diversity), we will identify new QTLs and refine the known QTLs. In so doing, we will reduce the mouse genetic intervals, find and test candidate genes, identify new loci, and validate our new molecular tools that will eventually add value to drug and diagnostic screening approaches. Discoveries using this mouse model continue to contribute to a better understanding and treatment options for human AA, especially since recent human genetic linkage studies found corresponding genetic intervals to those in our mouse model.

Public Health Relevance

Alopecia areata is a relatively common (up to 2% of the population, 6,000,000+ people, during their lifetime) autoimmune disease that causes severe psychological stress. Our mouse model provides a comprehensive understanding of this extremely complex genetic disease. Over 38 genes are dysregulated in the major quantitative trait locus and, with these data, plus that from the 3 minor loci, the major molecular network has been defined that leads to this cell mediated autoimmune skin disease. One of the major structural proteins in the hair was identified that is downregulated resulting in fragility and breakage, the clinical presentation of alopecia areata. Environmental (vitamin A levels in the diet) effects on disease severity were first identified in the mouse and recently confirmed in human patients. Refining and expanding these observations will help us understand the genetic basis of alopecia areata. Changes in gene networks associated with alopecia areata disease progression and success or failure of drug efficacy screening studies will provide new tools to accurately diagnose the human disease and predict optimal treatment regiments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR056635-04
Application #
8506975
Study Section
Arthritis, Connective Tissue and Skin Study Section (ACTS)
Program Officer
Cibotti, Ricardo
Project Start
2010-07-10
Project End
2015-06-30
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
4
Fiscal Year
2013
Total Cost
$362,137
Indirect Cost
$147,190
Name
Jackson Laboratory
Department
Type
DUNS #
042140483
City
Bar Harbor
State
ME
Country
United States
Zip Code
04609
Sundberg, John P; Chevallier, Lucie; Silva, Kathleen A et al. (2014) Mouse alopecia areata and heart disease: know your mouse! J Invest Dermatol 134:279-81
Sundberg, John P; Awgulewitsch, Alexander; Pruett, Nathan D et al. (2014) Crisp1 and alopecia areata in C3H/HeJ mice. Exp Mol Pathol 97:525-8
King Jr, Lloyd E; Silva, Kathleen A; Kennedy, Victoria E et al. (2014) Lack of response to laser comb in spontaneous and graft-induced alopecia areata in C3H/HeJ mice. J Invest Dermatol 134:264-6
Wu, Baojin; Herbert Pratt, C; Potter, Christopher S et al. (2013) R164C mutation in FOXQ1 H3 domain affects formation of the hair medulla. Exp Dermatol 22:234-6
Silva, Kathleen A; Sundberg, John P (2013) Surgical methods for full-thickness skin grafts to induce alopecia areata in C3H/HeJ mice. Comp Med 63:392-7
Duncan, F Jason; Silva, Kathleen A; Johnson, Charles J et al. (2013) Endogenous retinoids in the pathogenesis of alopecia areata. J Invest Dermatol 133:334-43
Fleckman, Philip; Jaeger, Karin; Silva, Kathleen A et al. (2013) Comparative anatomy of mouse and human nail units. Anat Rec (Hoboken) 296:521-32
Sundberg, J P; Silva, K A (2012) What color is the skin of a mouse? Vet Pathol 49:142-5
McPhee, Caroline G; Duncan, F Jason; Silva, Kathleen A et al. (2012) Increased expression of Cxcr3 and its ligands, Cxcl9 and Cxcl10, during the development of alopecia areata in the mouse. J Invest Dermatol 132:1736-8
Schofield, Paul N; Vogel, Peter; Gkoutos, Georgios V et al. (2012) Exploring the elephant: histopathology in high-throughput phenotyping of mutant mice. Dis Model Mech 5:19-25

Showing the most recent 10 out of 14 publications