This proposal aims at elucidating the epigenetic control of embryonic stem cell (ESC) commitment to the skeletal muscle lineage and further maturation into differentiated myotubes in response to the extra-cellular signal-activated p38 pathway. We will elucidate the mechanism by which the SWl/SNF chromatin remodeling component BAF60c (encoded by SMARCD3) enables MyoD to convert ESCs into the myogenic lineage and will characterize the molecular basis by which the p38 signaling coordinates gene activation and repression in ESC-derived muscle progenitors through the genome re-distribution of two distinct chromatin-modifying complexes - the SWI/SNF and the Polycomb group (PcG) complexes. We will also perform high-throughput screening (HTS) to identify compounds that sensitize ESCs to adopt the skeletal muscle lineage, via induction of endogenous BAF60c expression. The following are specific aims.
Aim 1. To elucidate the mechanism by which BAF60c enables MyoD to convert ESC into muscle progenitors (ESC BAF60c/MyoD). 1a- Perform gene expression profiling and genome-wide chromatin analysis in hESCs committed to the myogenic lineage by the ectopic expression of MyoD and BAF60c. 1b. Characterize the function of BAF60c in the myogenic commitment of hESCs.
Aim 2. To characterize the response of ESC BAF60c/MyoD to the p38 signaling. 2a- Analyze the p38-mediated recruitment of SWI/SNF complex to the chromatin of muscle differentiation genes in ESC BAF60c/MyoD. 2b Analyze the p38-dependent repression of Pax7 in ESC BAF60c/MyoD.
Aim 3. To identify compounds that implement ESC conversion to the myogenic lineage, via BAF60c induction. 3a- Analyze the epigenetic profile of the BAF60c locus and characterize the BAF60c promoter during hESC transition to muscle progenitor cells. 3b- Use BAF60c promoter-GFP reporter and high- throughput screening (HTS) to identify compounds that induce BAF60c in ESCs. We anticipate that the knowledge gained from this research will contribute to identify strategies that implement stem cell-based regeneration of diseased muscles. Overall, our proposed research will reveal targets for novel interventions directed to the interface between intracellular signaling pathways and downstream epigenetic modifications, for a pharmacological control of muscle stem cells.

Public Health Relevance

This proposal aims at elucidating the epigenetic basis that control human embryonic stem cell (hESC) commitment to the skeletal myogenic lineage, their further maturation into differentiated muscles, and their response to extra-cellular signals. The ultimate goal of this proposal is to identify novel targets for strategies that manipulate stem cells to regenerate diseased muscles. We predict that the results gathered from this proposal will contribute to fill the gap between our current knowledge of stem cell biology and the mechanism by which stem cells reprogram their genome toward specific cellular lineages in response to extrinsic signals. This information is critical for the pharmacological manipulation of hESC to generate tissue progenitors and devise strategies in regenerative medicine, such as stem cell-based regeneration of diseased muscles. An additional benefit that will derive from this proposal is the potential discovery of the epigenetic basis underlying the different responsiveness to external cues in hESC-derived muscle progenitors vs adult muscle stem cells (satellite cells). This comparison will help to optimize regenerative strategies from exogenous (hESC) or endogenous (satellite cells) sources of muscle progenitors.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR056712-04
Application #
8304330
Study Section
Skeletal Muscle and Exercise Physiology Study Section (SMEP)
Program Officer
Boyce, Amanda T
Project Start
2009-08-01
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
4
Fiscal Year
2012
Total Cost
$416,988
Indirect Cost
$203,148
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Madaro, Luca; Passafaro, Magda; Sala, David et al. (2018) Denervation-activated STAT3-IL-6 signalling in fibro-adipogenic progenitors promotes myofibres atrophy and fibrosis. Nat Cell Biol 20:917-927
Sartorelli, Vittorio; Puri, Pier Lorenzo (2018) Shaping Gene Expression by Landscaping Chromatin Architecture: Lessons from a Master. Mol Cell 71:375-388
Marroncelli, Nicoletta; Bianchi, Marzia; Bertin, Marco et al. (2018) HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes. Sci Rep 8:3448
Cunningham, Thomas J; Yu, Michael S; McKeithan, Wesley L et al. (2017) Id genes are essential for early heart formation. Genes Dev 31:1325-1338
Cui, Huanhuan; Bansal, Vikas; Grunert, Marcel et al. (2017) Muscle-relevant genes marked by stable H3K4me2/3 profiles and enriched MyoD binding during myogenic differentiation. PLoS One 12:e0179464
Roberts, Thomas C; Etxaniz, Usue; Dall'Agnese, Alessandra et al. (2017) BRD3 and BRD4 BET Bromodomain Proteins Differentially Regulate Skeletal Myogenesis. Sci Rep 7:6153
Latella, Lucia; Dall'Agnese, Alessandra; Boscolo, Francesca Sesillo et al. (2017) DNA damage signaling mediates the functional antagonism between replicative senescence and terminal muscle differentiation. Genes Dev 31:648-659
Consalvi, Silvia; Brancaccio, Arianna; Dall'Agnese, Alessandra et al. (2017) Praja1 E3 ubiquitin ligase promotes skeletal myogenesis through degradation of EZH2 upon p38? activation. Nat Commun 8:13956
Fiacco, E; Castagnetti, F; Bianconi, V et al. (2016) Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death Differ 23:1839-1849
Malecova, Barbora; Dall'Agnese, Alessandra; Madaro, Luca et al. (2016) TBP/TFIID-dependent activation of MyoD target genes in skeletal muscle cells. Elife 5:

Showing the most recent 10 out of 29 publications