Squamous cell carcinomas of the skin (SCC) are a leading cause of death in organ transplant recipients and treatment of non-melanoma skin cancers, of which SCC is the second most frequent type, account for 4.5% of all Medicare cancer costs. The incidence and malignancy of SCC are greatly increased in patients with decreased T cell function, suggesting a role for the immune system in controlling these tumors. T cells are found within SCC but fail to control tumor growth. Preliminary results are presented that SCC evade the immune system by two newly identified mechanisms. First, by failing to express E-selectin on tumor vessels, SCC evade the population of antigen-experienced skin homing T cells most capable of recognizing the tumor. Second, by recruiting FOXP3+ regulatory T cells (Treg), SCC create a local environment of immune suppression around the tumor. Imiquimod, a TLR7 agonist effective in the treatment of skin cancers, neutralizes both of these defenses, inducing expression of E-selectin on tumor vessels, restoring the ability of CLA+ skin homing T cells to enter the tumor and reducing the % FOXP3+ Treg to levels found in normal skin. Studies described in this proposal focus on determining how SCC inhibit vascular E-selectin and recruit Treg with the goal of developing novel agents for the treatment of SCC and their premalignant precursor lesions, actinic keratoses (AK). Additional studies focus on determining the mechanisms by which imiquimod induces vascular E-selectin and restores T cell homing, with the goal of developing agents that can treat established SCC without the risk of widespread immune stimulation that is a concern with TLR agonists such as imiquimod. Hypotheses are presented that nitric oxide (NO) produced by dendritic cells (DC) within SCC inhibit vascular E-selectin and that recruitment of NO-producing DC and Treg both occur via CCR2. Proposed studies investigate if inhibition of CCR2 function, induction of E-selectin on tumor vessels and inhibition of Treg recruitment can enhance the immunologic response to SCC. These questions will be investigated first in vitro and then in immunodeficient mice grafted with human SCC tumors. Lastly, studies are proposed to determine if aberrant homing and Treg recruitment also occur in AK. If so, therapies that induce E-selectin and inhibit recruitment of Treg may be effective in the treatment of these lesions, inducing their immunologic destruction before they progress to SCC. Novel therapies will be evaluated in vitro and in mice grafted with human AK. These studies address two long-term interests of NIAMS: study of the skin as an immune organ and study of the role of the immune system in the development and treatment of skin cancer.

Public Health Relevance

These studies focus on the development of novel therapies for squamous cell carcinomas and their premalignant precursor lesions that are safe for use in normal and immunosuppressed individuals. The skin is an accessible tissue in which to study tumor immunity because immune reactions in the skin are visible, easily sampled and can be manipulated with topical medications. Because impaired T cell homing and recruitment of regulatory T cells occur in many human malignancies, findings and novel therapies arising from this work should be applicable to the treatment of other types of human cancer.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR056720-04
Application #
8294917
Study Section
Cancer Immunopathology and Immunotherapy Study Section (CII)
Program Officer
Cibotti, Ricardo
Project Start
2009-07-10
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
4
Fiscal Year
2012
Total Cost
$371,851
Indirect Cost
$158,011
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Jain, Salvia; Stroopinsky, Dina; Yin, Li et al. (2015) Mucin 1 is a potential therapeutic target in cutaneous T-cell lymphoma. Blood 126:354-62
Clark, Rachael A (2015) Resident memory T cells in human health and disease. Sci Transl Med 7:269rv1
Gaide, Olivier; Emerson, Ryan O; Jiang, Xiaodong et al. (2015) Common clonal origin of central and resident memory T cells following skin immunization. Nat Med 21:647-53
Watanabe, Rei; Gehad, Ahmed; Yang, Chao et al. (2015) Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci Transl Med 7:279ra39
Kirsch, Ilan R; Watanabe, Rei; O'Malley, John T et al. (2015) TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL. Sci Transl Med 7:308ra158
Rook, Alain H; Gelfand, Joel M; Gelfand, Joel C et al. (2015) Topical resiquimod can induce disease regression and enhance T-cell effector functions in cutaneous T-cell lymphoma. Blood 126:1452-61
Watanabe, Rei; Teague, Jessica E; Fisher, David C et al. (2014) Alemtuzumab therapy for leukemic cutaneous T-cell lymphoma: diffuse erythema as a positive predictor of complete remission. JAMA Dermatol 150:776-9
Fischer, Sebastian; Lian, Christine G; Kueckelhaus, Maximilian et al. (2014) Acute rejection in vascularized composite allotransplantation. Curr Opin Organ Transplant 19:531-44
Schlapbach, Christoph; Gehad, Ahmed; Yang, Chao et al. (2014) Human TH9 cells are skin-tropic and have autocrine and paracrine proinflammatory capacity. Sci Transl Med 6:219ra8
Hijnen, Dirkjan; Knol, Edward F; Gent, Yoony Y et al. (2013) CD8(+) T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-γ, IL-13, IL-17, and IL-22. J Invest Dermatol 133:973-9

Showing the most recent 10 out of 29 publications