Signaling pathway components such as Ihh/Pthrp, TGF?, BMPs, Wnt/?-catenin, FGFs, and Sox-related proteins represent important regulators of cartilage formation and development. These same signaling pathways and related molecules are being targeted for clinical treatment of cartilage injuries and diseases (osteoarthritis, rheumatoid arthritis, and fracture repair) and cartilage tissue engineering applications (maintenance and manipulation of mesenchymal progenitor cells (MPCs)). We provide original, unpublished data indicating that the Notch signaling pathway is another important regulator of MPC differentiation and chondrocyte maturation, leading to questions regarding the mechanisms by which Notch controls these processes. To begin addressing these questions, we propose to test the novel hypothesis that RBPj?-dependent Notch signaling suppresses MPC differentiation and chondrogenesis by interacting with stabilized ?-catenin to regulate Hes1 and ultimately Sox9, and is later required to promote chondrocyte maturation via cartilage specific regulation of Hes1 and Runx2 activities. To test these hypotheses, we will address two Specific Aims. Experiments in Specific Aim 1 will investigate whether Hes1 is required for MPC differentiation and chondrogenesis or the Notch-mediated suppression of MPC differentiation using limb mesenchyme specific conditional loss-of-function and genetic rescue mouse models. Secondly, we will determine whether the Wnt/beta-catenin signaling pathway is necessary and sufficient for Notch mediated induction of Hes1 and suppression of MPC differentiation. Finally, we will determine whether Hes1 suppresses MPC differentiation by directly regulating Sox9 expression.
Specific Aim 2 will first examine the potential roles for both RBPJ?- dependent and -independent Notch signaling in promoting chondrocyte maturation using various tissue specific Notch gain- and loss-of-function mouse models. Additionally, we will perform in vitro experiments using primary chondrocyte cultures to identify RBPJ?-dependent Notch targets that regulate chondrocyte maturation and examine whether Notch mediates Wnt/beta-catenin or BMP signaling during this process. Secondly, we will use two different conditional Hes1 mutant mouse models to determine whether Hes1 is the primary RBPJk-dependent Notch regulator of chondrocyte maturation. Finally, in vitro studies will be performed to determine whether Hes1 promotes Runx2 activity and chondrocyte maturation via competitive interactions with the mutual co-repressor, Groucho related gene (Grg1). Completion of these aims will identify the Notch signaling mechanisms important in regulating MPC maintenance and expansion, as well as, chondrocyte maturation. These molecules will likely serve as therapeutic targets for cartilage injuries or diseases and provide us with potential tools for use in cartilage tissue engineering applications.

Public Health Relevance

We have identified the RBPJ?-dependent Notch pathway as an important regulator of MPC differentiation and chondrocyte maturation. Our proposal will determine the exact Notch signaling mechanisms responsible for suppressing chondrogenic commitment from mesenchymal progenitor cells (MPCs) and for promoting chondrocyte maturation. Data generated by this proposal will likely implicate specific Notch signaling molecules as potential therapeutic targets for cartilage related injuries and diseases, as well as, provide potential tools in MPC maintenance and expansion for use in tissue engineering applications.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Research Project (R01)
Project #
Application #
Study Section
Skeletal Biology Development and Disease Study Section (SBDD)
Program Officer
Tyree, Bernadette
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Rochester
Schools of Dentistry
United States
Zip Code
Wang, Cuicui; Shen, Jie; Yukata, Kiminori et al. (2015) Transient gamma-secretase inhibition accelerates and enhances fracture repair likely via Notch signaling modulation. Bone 73:77-89
Long, Teng; Zhu, Zhenan; Awad, Hani A et al. (2014) The effect of mesenchymal stem cell sheets on structural allograft healing of critical sized femoral defects in mice. Biomaterials 35:2752-9
Jones, Kevin B; Pacifici, Maurizio; Hilton, Matthew J (2014) Multiple hereditary exostoses (MHE): elucidating the pathogenesis of a rare skeletal disorder through interdisciplinary research. Connect Tissue Res 55:80-8
Mack, Sarah A; Maltby, Kathleen M; Hilton, Matthew J (2014) Demineralized murine skeletal histology. Methods Mol Biol 1130:165-83
Mirando, Anthony J; Dong, Yufeng; Kim, Jinsil et al. (2014) Isolation and culture of murine primary chondrocytes. Methods Mol Biol 1130:267-77
Rutkowski, Timothy; Rutkowsky, Timothy; Sharma, Deepika et al. (2014) Whole-mount in situ hybridization on murine skeletogenic tissues. Methods Mol Biol 1130:193-201
Mirando, Anthony J; Liu, Zhaoyang; Moore, Tyler et al. (2013) RBP-J*-dependent Notch signaling is required for murine articular cartilage and joint maintenance. Arthritis Rheum 65:2623-33
Chen, Tony; Hilton, Matthew J; Brown, Edward B et al. (2013) Engineering superficial zone features in tissue engineered cartilage. Biotechnol Bioeng 110:1476-86
Kohn, Anat; Dong, Yufeng; Mirando, Anthony J et al. (2012) Cartilage-specific RBPj*-dependent and -independent Notch signals regulate cartilage and bone development. Development 139:1198-212
Dao, Debbie Y; Jonason, Jennifer H; Zhang, Yongchun et al. (2012) Cartilage-specific ?-catenin signaling regulates chondrocyte maturation, generation of ossification centers, and perichondrial bone formation during skeletal development. J Bone Miner Res 27:1680-94

Showing the most recent 10 out of 11 publications