Microengineered osteons for bone tissue engineering Repair of load bearing bone defects remains a significant clinical problem. Often bone grafts are required for reconstructive skeletal procedures to aid fracture healing, bone fusion, implant integration and repair of skeletal defects, but the use of allograft bone is limited by a high failure rate. Tissue engineered constructs are promising substitutes. However, engineered tissues for bone repair are often limited by a lack of vascularity, the difficulty to engineer the complex bone microarchitecture and insufficient scaffold mechanical strength. We propose to use a multi-scale approach to bone tissue engineering that combines nanoscale molecular alignment, microengineered tissues and biomimetic bone scaffolds. We therefore aim to generate microengineered osteon-like units and to integrate the resulting structures within biomimetic scaffolds and to analyze the constructs in vitro and in vivo. This will result in mineralized vascular tissues with controlled architectures on a variety of functional and physiologically relevant scales. It is expected that this project will generate a new paradigm in bone tissue engineering by enabling the formation of complex microstructures such as osteon-like units with vascular channels within cortical bone.

Public Health Relevance

Repair of load bearing bone defects remains a significant clinical challenge. This project is expected to generate a new paradigm in bone tissue engineering by enabling the formation of complex microstructures such as osteon-like units with vascular channels within cortical bone.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR057837-04
Application #
8517582
Study Section
Musculoskeletal Tissue Engineering Study Section (MTE)
Program Officer
Wang, Fei
Project Start
2010-07-01
Project End
2014-07-31
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
4
Fiscal Year
2013
Total Cost
$417,941
Indirect Cost
$80,877
Name
Stanford University
Department
Surgery
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés et al. (2016) Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications. Sci Rep 6:22691
Zhang, Yu Shrike; Yue, Kan; Aleman, Julio et al. (2016) 3D Bioprinting for Tissue and Organ Fabrication. Ann Biomed Eng :
Bagherifard, Sara; Tamayol, Ali; Mostafalu, Pooria et al. (2016) Dermal Patch with Integrated Flexible Heater for on Demand Drug Delivery. Adv Healthc Mater 5:175-84
Leijten, Jeroen; Khademhosseini, Ali (2016) From Nano to Macro: Multiscale Materials for Improved Stem Cell Culturing and Analysis. Cell Stem Cell 18:20-4
Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh et al. (2016) Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers. Sci Rep 6:24598
Masoudi, Elham; Ribas, João; Kaushik, Gaurav et al. (2016) Platelet-Rich Blood Derivatives for Stem Cell-Based Tissue Engineering and Regeneration. Curr Stem Cell Rep 2:33-42
Mousavi Shaegh, Seyed Ali; De Ferrari, Fabio; Zhang, Yu Shrike et al. (2016) A microfluidic optical platform for real-time monitoring of pH and oxygen in microfluidic bioreactors and organ-on-chip devices. Biomicrofluidics 10:044111
Santa Maria, Peter Luke; Kim, Sungwoo; Yang, Yunzhi Peter (2016) No systemic exposure of transtympanic heparin-binding epidermal growth factor like growth factor. Drug Chem Toxicol 39:451-4
Leijten, Jeroen; Rouwkema, Jeroen; Zhang, Yu Shrike et al. (2016) Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration. Small 12:2130-45
Zhang, Yu Shrike; Arneri, Andrea; Bersini, Simone et al. (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45-59

Showing the most recent 10 out of 139 publications