In addition to transcriptional regulation of gene output, mammalian genomes produce extensive transcriptome and proteome diversity by alternative splicing and selection of alternative 3'mRNA ends during pre-mRNA processing. As for transcription, transcriptome processing is extensively regulated in response to dynamic physiological needs. The regulation of transcriptome processing involves interconnected networks controlled by RNA binding proteins that bind to preferred sequence motifs within the pre-mRNA near the sites of regulated processing. The long term goal of this project is to determine the extent, regulatory mechanisms, and functional consequences of transcriptome processing in adult skeletal muscle. The disruption of transcriptome processing networks contributes to disease in skeletal muscle yet little is known regarding the extent or functions of normal regulation. In the first part of this proposal, we will identify the regulatory networks controlled by the Fox family of RNA binding proteins in skeletal muscle and determine their functions during myoblast differentiation. We will use tissue specific and inducible knock outs of the two Fox genes expressed in skeletal muscle to determine the functions of the regulatory networks in myofibers and satellite cells in adult skeletal muscle. In the second part of the proposal, we will identify additional regulatory networks operative during myoblast differentiation using a bichromatic splicing reporter in high throughput RNAi screens. Knowledge gained will be directed toward understanding the roles of these networks in adult skeletal muscle. The results will provide a new understanding of the role of nuclear post-transcriptional regulation in the diverse homeostatic functions of adult skeletal muscle and its capacity for repair. This understanding is important for development and application of novel therapeutic strategies to conditions that negatively affect skeletal muscle function.

Public Health Relevance

Post-transcriptional regulation of gene expression, such as alternative splicing and 3'end processing, play a large role in controlling gene expression. This proposal studies the mechanisms of alternative splicing and 3'end processing during skeletal muscle differentiation and in adult skeletal muscle tissue. This information will be used to understand normal processes in skeletal muscle useful for future development of therapeutic approaches to reverse or circumvent disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Type
Research Project (R01)
Project #
5R01AR060733-04
Application #
8627546
Study Section
Special Emphasis Panel (ZRG1-MOSS-K (02))
Program Officer
Boyce, Amanda T
Project Start
2011-04-01
Project End
2016-02-29
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
4
Fiscal Year
2014
Total Cost
$345,083
Indirect Cost
$124,583
Name
Baylor College of Medicine
Department
Pathology
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Sharpe, Joshua J; Cooper, Thomas A (2017) Unexpected consequences: exon skipping caused by CRISPR-generated mutations. Genome Biol 18:109
Manning, Kassie S; Rao, Ashish N; Castro, Miguel et al. (2017) BNANC Gapmers Revert Splicing and Reduce RNA Foci with Low Toxicity in Myotonic Dystrophy Cells. ACS Chem Biol 12:2503-2509
Manning, Kassie S; Cooper, Thomas A (2017) The roles of RNA processing in translating genotype to phenotype. Nat Rev Mol Cell Biol 18:102-114
Brinegar, Amy E; Xia, Zheng; Loehr, James Anthony et al. (2017) Extensive alternative splicing transitions during postnatal skeletal muscle development are required for calcium handling functions. Elife 6:
Cox, Diana C; Cooper, Thomas A (2016) Non-canonical RAN Translation of CGG Repeats Has Canonical Requirements. Mol Cell 62:155-6
Giudice, Jimena; Xia, Zheng; Li, Wei et al. (2016) Neonatal cardiac dysfunction and transcriptome changes caused by the absence of Celf1. Sci Rep 6:35550
Brinegar, Amy E; Cooper, Thomas A (2016) Roles for RNA-binding proteins in development and disease. Brain Res 1647:1-8
Giudice, Jimena; Loehr, James A; Rodney, George G et al. (2016) Alternative Splicing of Four Trafficking Genes Regulates Myofiber Structure and Skeletal Muscle Physiology. Cell Rep 17:1923-1933
Jaiswal, Manish; Haelterman, Nele A; Sandoval, Hector et al. (2015) Impaired Mitochondrial Energy Production Causes Light-Induced Photoreceptor Degeneration Independent of Oxidative Stress. PLoS Biol 13:e1002197
Hsu, Tiffany Y-T; Simon, Lukas M; Neill, Nicholas J et al. (2015) The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature 525:384-8

Showing the most recent 10 out of 32 publications