The skeletal dysplasias (SDs) are a heterogeneous group of genetic disorders associated with abnormalities in the skeleton that lead to long-term physical disabilities in survivors and lethal skeletal abnormalities in some cases. Over the last 30 years, we have collected material on more than 18,000 skeletal dysplasia cases, more than half presenting to various degrees in the prenatal period. This project is aimed at defining the ultrasound, clinical, histologic, molecular, and pathophysiologic features of novel or poorly delineated prenatal onset skeletal disorders. The goals of this project are to define and solve the molecular basis of these disorders, thereby increasing our knowledge of skeletal development and biology and improving our understanding of the mechanisms and developmental course of prenatal onset skeletal dysplasias. We will achieve these goals through the following Specific Aims: 1. Define and characterize novel skeletal dysplasias. Using the large number of previously ascertained cases, we have determined that approximately 10% of prenatal onset skeletal dysplasias cannot be assigned a specific diagnosis. We will take advantage of this unique resource of unclassified cases by defining novel prenatal onset skeletal disorders. We will first concentrate on phenotyping and classifying poorly defined, yet frequently encountered, disorders with the findings of bent bones and multiple vertebral segmentation defects. 2. Identify the underlying genetic basis of novel skeletal dysplasias.
This Aim will capitalize on the availability of DNA for the disorders defined in Aim 1 and will use exome sequencing as the primary approach to identifying their genetic basis. The exome sequencing data will be filtered based on the pattern of inheritance, loci identified by homozygosity mapping in selected cases of recessive disorders with parental consanguinity, and gene expression in the target tissues, growth plate cartilage and perichondrium/periosteum. For the perichondrium/periosteum, our preliminary data on bent bone disorders have identified an important yet unappreciated role for the effects of genes expressed in perichondrium/periosteum on skeletal development. It is thus our expectation that many of the bent bone disorders that we will characterize, define and solve will result from genes with high expression in this region of the developing skeleton. Identifying the molecular defect in these understudied disorders, will be complemented by experiments aimed at determining their pathogenetic mechanisms, and will provide molecular, histologic and clinical structures within which to understand and classify this diverse group of disorders. The expected outcomes of the proposed work will improve our understanding of currently poorly delineated prenatal onset skeletal disorders. Of medical importance to the general population, discovering the genes and pathways in these prenatal onset genetic skeletal dysplasias will identify previously unknown mechanisms and pathways involved in normal growth, bone and cartilage homeostasis and the development of arthritis and osteoporosis, thus providing essential data for developing rational clinical care and treatment paradigms.

Public Health Relevance

The goals of this project are to define and solve the molecular basis of rare, prenatal onset disorder that affect the skeleton, thereby increasing our knowledge of skeletal development and biology and improving our understanding of the natural history of these disorders.

National Institute of Health (NIH)
National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
Research Project (R01)
Project #
Application #
Study Section
Skeletal Biology Development and Disease Study Section (SBDD)
Program Officer
Tyree, Bernadette
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Los Angeles
Schools of Medicine
Los Angeles
United States
Zip Code
Duran, Ivan; Taylor, S Paige; Zhang, Wenjuan et al. (2016) Destabilization of the IFT-B cilia core complex due to mutations in IFT81 causes a Spectrum of Short-Rib Polydactyly Syndrome. Sci Rep 6:34232
Weinstein, Michael M; Kang, Taekyu; Lachman, Ralph S et al. (2016) Somatic mosaicism for a lethal TRPV4 mutation results in non-lethal metatropic dysplasia. Am J Med Genet A 170:3298-3302
Toriyama, Michinori; Lee, Chanjae; Taylor, S Paige et al. (2016) The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat Genet 48:648-56
Schmidts, Miriam; Hou, Yuqing; Cortés, Claudio R et al. (2015) TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport. Nat Commun 6:7074
Taylor, S Paige; Dantas, Tiago J; Duran, Ivan et al. (2015) Mutations in DYNC2LI1 disrupt cilia function and cause short rib polydactyly syndrome. Nat Commun 6:7092
Lee, Hane; Nevarez, Lisette; Lachman, Ralph S et al. (2015) A second locus for Schneckenbecken dysplasia identified by a mutation in the gene encoding inositol polyphosphate phosphatase-like 1 (INPPL1). Am J Med Genet A 167A:2470-3
Duran, Ivan; Nevarez, Lisette; Sarukhanov, Anna et al. (2015) HSP47 and FKBP65 cooperate in the synthesis of type I procollagen. Hum Mol Genet 24:1918-28
Krakow, Deborah (2015) Skeletal dysplasias. Clin Perinatol 42:301-19, viii
Chong, Jessica X; Burrage, Lindsay C; Beck, Anita E et al. (2015) Autosomal-Dominant Multiple Pterygium Syndrome Is Caused by Mutations in MYH3. Am J Hum Genet 96:841-9