There are over 80 different autoimmune diseases that are debilitating against which currently there is no cure. Thus, patients resort to complementary and alternative medicine (CAM) to find relief from pain and inflammation. Multiple Sclerosis (MS) is one such autoimmune disease that affects ~350,000-500,000 people in the US. It is a chronic disease characterized by inflammation in the central nervous system that results in neuron demyelination leading to paralysis. Dietary indoles including indole-3-carbinol (I3C) found in cruciferous vegetables such as cauliflower, cabbage and Brussels sprouts, as well as its derivative, diindolylmethane (DIM) have also been known for their health benefits and for their anti-cancer properties. Interestingly, these compounds can bind to the aryl hydrocarbon receptor (AhR), which is well characterized as a transcription factor that regulates xenobiotic metabolism. Also, recent studies suggested that AhR may also regulate certain important immune functions such as T cell differentiation. We have made an exciting observation that dietary indoles such as DIM can completely suppress the clinical disease in an experimental model of MS known as Experimental Autoimmune Encephalomyelitis (EAE). In the current study, we will test the central hypothesis that treatment with these naturally- occurring indoles is effective against induction and progression of EAE through a central pathway of activation of AhR, leading to suppression of proinflammatory Th1/Th17cells and induction of T regs/Th2 cells via epigenetic regulatory mechanisms such as DNA methylation and miRNA dysregulation that block neuroinflammation. To this end, we will test the following aims:
In aim 1, we will examine whether treatment with indoles such as I3C or DIM leads to decreased neuroinflammation by downregulation of Th1 and Th17 cell responses against myelin antigens and upregulation of Th2 and FoxP3+ Tregs. We will test whether activation of AhR by these indoles leads to dysregulation in the Th/Treg cell responses using AhR knock out (KO) mice.
In aim 2, we will test the central hypothesis that indoles facilitate Th17 to Treg switch in EAE mice by DNA hypomethylation of Foxp3 gene promoter while silencing the Th17 activity by hypermethylation of IL-17 promoters. Lastly, in aim 3, we will test the hypothesis that administration of these indoles triggers dysregulation in the expression of microRNA-466i and microRNA-325 that leads to increased polarization of Tregs and decreased differentiation of T17 cells. The current study investigates the mechanism of action of plant-derived indoles used as dietary supplements, specifically addressing the role of AhR activation in the regulation of inflammation. These studies should provide novel insights into the basic mechanisms through which plant indoles exhibit anti- inflammatory properties so that they can be used against a wide range of autoimmune and inflammatory diseases.

Public Health Relevance

Cruciferous vegetables are good source of indoles that are used as a dietary supplement to promote health and prevent cancer. We have shown that they activate AhR receptor which can lead to suppression of inflammation and autoimmune disease. The current study will further characterize the mechanism of action of such indoles and how they can be used to treat an experimental model of multiple sclerosis.

Agency
National Institute of Health (NIH)
Institute
National Center for Complementary & Alternative Medicine (NCCAM)
Type
Research Project (R01)
Project #
5R01AT006888-02
Application #
8307281
Study Section
Special Emphasis Panel (ZAT1-SM (23))
Program Officer
Pontzer, Carol H
Project Start
2011-08-01
Project End
2016-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
2
Fiscal Year
2012
Total Cost
$398,751
Indirect Cost
$107,692
Name
University of South Carolina at Columbia
Department
Pathology
Type
Schools of Medicine
DUNS #
041387846
City
Columbia
State
SC
Country
United States
Zip Code
29208
Bam, Marpe; Yang, Xiaoming; Zhou, Juhua et al. (2016) Evidence for Epigenetic Regulation of Pro-Inflammatory Cytokines, Interleukin-12 and Interferon Gamma, in Peripheral Blood Mononuclear Cells from PTSD Patients. J Neuroimmune Pharmacol 11:168-81
Ginwala, Rashida; McTish, Emily; Raman, Chander et al. (2016) Apigenin, a Natural Flavonoid, Attenuates EAE Severity Through the Modulation of Dendritic Cell and Other Immune Cell Functions. J Neuroimmune Pharmacol 11:36-47
Yang, Xiaoming; Bam, Marpe; Nagarkatti, Prakash S et al. (2016) RNA-seq Analysis of δ9-Tetrahydrocannabinol-treated T Cells Reveals Altered Gene Expression Profiles That Regulate Immune Response and Cell Proliferation. J Biol Chem 291:15460-72
Bam, Marpe; Yang, Xiaoming; Zumbrun, Elizabeth E et al. (2016) Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation. Sci Rep 6:31209
Sido, Jessica M; Jackson, Austin R; Nagarkatti, Prakash S et al. (2016) Marijuana-derived Δ-9-tetrahydrocannabinol suppresses Th1/Th17 cell-mediated delayed-type hypersensitivity through microRNA regulation. J Mol Med (Berl) 94:1039-51
Chandrashekaran, Varun; Das, Suvarthi; Seth, Ratanesh Kumar et al. (2016) Purinergic receptor X7 mediates leptin induced GLUT4 function in stellate cells in nonalcoholic steatohepatitis. Biochim Biophys Acta 1862:32-45
Sido, Jessica M; Nagarkatti, Prakash S; Nagarkatti, Mitzi (2016) Production of endocannabinoids by activated T cells and B cells modulates inflammation associated with delayed-type hypersensitivity. Eur J Immunol 46:1472-9
Elliott, David M; Nagarkatti, Mitzi; Nagarkatti, Prakash S (2016) 3,39-Diindolylmethane Ameliorates Staphylococcal Enterotoxin B–Induced Acute Lung Injury through Alterations in the Expression of MicroRNA that Target Apoptosis and Cell-Cycle Arrest in Activated T Cells. J Pharmacol Exp Ther 357:177-87
Guan, Hongbing; Singh, Udai P; Rao, Roshni et al. (2016) Inverse correlation of expression of microRNA-140-5p with progression of multiple sclerosis and differentiation of encephalitogenic T helper type 1 cells. Immunology 147:488-98
Tomar, S; Nagarkatti, M; Nagarkatti, P S (2015) 3,3'-Diindolylmethane attenuates LPS-mediated acute liver failure by regulating miRNAs to target IRAK4 and suppress Toll-like receptor signalling. Br J Pharmacol 172:2133-47

Showing the most recent 10 out of 53 publications