PAX5 is one of the key transcription factors mediating differentiation of B-lymphocytes. It transcriptionally activates and represses a very large number of genes that permits the development of B-lymphocytes and prevents differentiation to T-lymphocytes or myeloid cells. We examined by SNP chip 633 acute lymphocytic leukemia (ALL) samples for PAX5 alterations (469 pediatric cases, 70 pediatric relapse cases, 74 adult cases and 50 ALL samples growing as xenografts). PAX5 genomic abnormalities occurred in H 27% of the samples including 26 PAX5 fusions to one of 5 other genes. Overall goal of the grant is to understand the clinical and pathologic significance of PAX5 alterations in ALL.
Specific Aim 1 will determine frequency of genomic abnormalities of PAX5 in ALL and determine their clinical impact.
Specific Aim 2 will define and understand the aberrant functions of PAX5 fusion and mutant proteins in ALL (Ex Vivo Studies). Studies will include gel retardation and reporter gene analysis as well as testing the ability of these proteins transcriptionally to activate selected target genes. Detailed studies will be done using two of the PAX5 fusions [PAX5-ETV6;PAX5- C20orf112 (C20)] including genome-wide identification of target genes of PAX5 fusion proteins in ALL using cDNA microarray analysis and high through-put ChIP sequencing studies. Comprehensive validation of the results will use a variety of techniques. Also, effect of PAX5 fusion proteins on hematopoietic cell differentiation will be determined.
Specific Aim 3 will use in vivo models to examine the aberrant function of PAX5 fusions and deletions. First, we will determine if expression of PAX5 fusion proteins disrupts normal steady-state lymphopoiesis or hematopoiesis by impairing differentiation, promoting survival and/or proliferation of specific compartments? Second, we will identify secondary events that synergize with PAX5 fusion proteins to induce ALL. Third, we will determine if PAX5 deletions affect the course of human Ph1+ ALL xenografts. In summary, we will for the first time, correlate PAX5 alterations with clinical and pathological characteristics of the patients and define fully the functional significance of these alterations. These studies will have importance for classification of the disease, offer new therapeutic targets and foster our understanding of the pathogenesis of ALL.

Public Health Relevance

PAX5 lymphoid transcription factor is structurally abnormal in approximately 27% of 634 ALL samples. Our studies will for the first time provide insights into the clinical significance of PAX5 alterations in acute lymphocyte leukemia (ALL), as well as provide an understanding of the functional ramifications of PAX5 alterations in ALL. Our studies should lead to new therapeutic targets for acute leukemias, as well as provide a greater understanding of the biology of ALL.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA026038-31
Application #
7860682
Study Section
Hematopoiesis Study Section (HP)
Program Officer
Mufson, R Allan
Project Start
2009-06-05
Project End
2014-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
31
Fiscal Year
2010
Total Cost
$376,582
Indirect Cost
Name
Cedars-Sinai Medical Center
Department
Type
DUNS #
075307785
City
Los Angeles
State
CA
Country
United States
Zip Code
90048
Sun, Q-Y; Ding, L-W; Tan, K-T et al. (2017) Ordering of mutations in acute myeloid leukemia with partial tandem duplication of MLL (MLL-PTD). Leukemia 31:1-10
Ding, Ling-Wen; Sun, Qiao-Yang; Tan, Kar-Tong et al. (2017) Mutational Landscape of Pediatric Acute Lymphoblastic Leukemia. Cancer Res 77:390-400
Ding, L-W; Ikezoe, T; Tan, K-T et al. (2017) Mutational profiling of a MonoMAC syndrome family with GATA2 deficiency. Leukemia 31:244-245
Madan, V; Shyamsunder, P; Han, L et al. (2016) Comprehensive mutational analysis of primary and relapse acute promyelocytic leukemia. Leukemia 30:1672-81
Cao, Q; Gearhart, M D; Gery, S et al. (2016) BCOR regulates myeloid cell proliferation and differentiation. Leukemia 30:1155-65
Sun, Haibo; Lin, De-Chen; Guo, Xiao et al. (2016) Inhibition of IRE1?-driven pro-survival pathways is a promising therapeutic application in acute myeloid leukemia. Oncotarget 7:18736-49
Madan, Vikas; Kanojia, Deepika; Li, Jia et al. (2015) Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat Commun 6:6042
Garg, Manoj; Okamoto, Ryoko; Nagata, Yasunobu et al. (2015) Establishment and characterization of novel human primary and metastatic anaplastic thyroid cancer cell lines and their genomic evolution over a year as a primagraft. J Clin Endocrinol Metab 100:725-35
Lin, De-Chen; Xu, Liang; Chen, Ye et al. (2015) Genomic and Functional Analysis of the E3 Ligase PARK2 in Glioma. Cancer Res 75:1815-27
Chien, Wenwen; Sun, Qiao-Yang; Lee, Kian Leong et al. (2015) Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer. Mol Oncol 9:889-905

Showing the most recent 10 out of 226 publications