The broad, long-term objective of this project is to continue the development of new bioprobes and methodologies for analysis of individual cells by flow and image cytometry. These assays will find utility in studies of DNA damage, DNA repair, carcinogenesis/mutagenesis, apoptosis, and in identifying the mechanism of action of antitumor drugs. The first approach analyzes changes in the maximal pixel intensity of fluorescence of DNA-bound fluorescent ligands, a reporter of chromatin relaxation, the initial event in a cell's DNA damage response (DDR). Other probes to be developed utilize phospho-specific antibodies and multiparameter cytometry to measure phosphorylation/activation of key DDRs: histone H2AX, ATM, Chk2 and p53. The probes ability to measure DDR in response to different types of DNA damage will be assessed including that caused by drugs, mutagens and radiation, and correlated with cell cycle phase and induction of apoptosis. The capability of image cytometry to quantify the frequency of individual nuclear foci each representing a DNA double-strand break (DSB) occurring during DDR will be explored. We will also develop an integrated, multiplexed methodology that combines the detection of DDR (induction of 3H2AX, or ATM, Chk2 and p53 phosphorylation) with the measurement of actual DNA damage, assessed by single-cell DNA electrophoresis (comet assay). The "image-merge" capability of the laser scanning cytometry will be used to integrate the analysis of DDR with the assay of DNA damage in the same individual cells. Another multiplexed assay to be developed will combine the analysis of DDR with DNA repair, measured as unscheduled DNA synthesis (UDS). The incorporation of 5-bromo-2'-deoxyuridine (BrdU) and 5-ethynyl-2'deoxyuridine (EdU), the latter followed by the cyclo-addition reaction ("click" chemistry) will be explored and developed so that UDS and DDR can be assessed in the same cell. Using the approaches described above, the potential DNA damage and DDR induced by supravital probes commonly used in cytometry (Hoechst 33342, DRAQ5, DyeCycle Violet and SYTO 17) will be assessed. Particular attention will be given to explore whether DNA damage occurs under conditions in which these probes are used to isolate stem cells as "side populations". The detection of DNA damage, especially DSBs, in cytometrically isolated stem cells will be predictive of the carcinogenic/mutagenic potential of the isolation procedure. Evaluation of the role of the tumor suppressor p53 in DDR caused by different genotoxic agents, including antitumor drugs targeting DNA, is another project in this application. The assays we propose to develop will find wide application in many diverse fields including pharmacology, mutagenesis, carcinogenesis, toxicology, experimental and clinical oncology as well as in cell and molecular biology.

Public Health Relevance

The aim of this project is to develop new methods to evaluate damage to the genetic material (DNA) of cells, and the repair of damaged DNA, as it occurs upon exposure to radiation, to environmental mutagens and also during treatment of cancer. Progressive age-related DNA damage is also the main cause of aging and predisposes individuals to cancer. The proposed methods will find wide application in screening for mutagens, prevention of cancer, development of new anticancer drugs, and in clinical oncology to rapidly detect the effectiveness of anticancer therapies thereby allowing selection of the most effective cancer treatment.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Microscopic Imaging Study Section (MI)
Program Officer
Ossandon, Miguel
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York Medical College
Schools of Medicine
United States
Zip Code
Darzynkiewicz, Zbigniew; Zhao, Hong; Halicka, H Dorota et al. (2014) In search of antiaging modalities: evaluation of mTOR- and ROS/DNA damage-signaling by cytometry. Cytometry A 85:386-99
Zhao, Hong; Darzynkiewicz, Zbigniew (2014) Attenuation of replication stress-induced premature cellular senescence to assess anti-aging modalities. Curr Protoc Cytom 69:9.47.1-9.47.10
Wlodkowic, Donald; Akagi, Jin; Dobrucki, Jurek et al. (2013) Kinetic viability assays using DRAQ7 probe. Curr Protoc Cytom Chapter 9:Unit 9.41
Zhang, Sufang; Zhao, Hong; Darzynkiewicz, Zbiegniew et al. (2013) A novel function of CRL4(Cdt2): regulation of the subunit structure of DNA polymerase ýý in response to DNA damage and during the S phase. J Biol Chem 288:29550-61
Bernas, Tytus; Berniak, Krzysztof; Rybak, Paulina et al. (2013) Analysis of spatial correlations between patterns of DNA damage response and DNA replication in nuclei of cells subjected to replication stress or oxidative damage. Cytometry A 83:925-32
Akagi, Jin; Kordon, Magdalena; Zhao, Hong et al. (2013) Real-time cell viability assays using a new anthracycline derivative DRAQ7®. Cytometry A 83:227-34
Darzynkiewicz, Zbigniew (2013) Perturbation of nucleotide metabolism--the driving force of oncogene-induced senescence. Oncotarget 4:649-50
Zhao, Hong; Halicka, H Dorota; Li, Jiangwei et al. (2013) DNA damage signaling, impairment of cell cycle progression, and apoptosis triggered by 5-ethynyl-2'-deoxyuridine incorporated into DNA. Cytometry A 83:979-88
Biela, Ewa; Galas, Jerzy; Lee, Brian et al. (2013) Col-F, a fluorescent probe for ex vivo confocal imaging of collagen and elastin in animal tissues. Cytometry A 83:533-9
Tarnok, A; Darzynkiewicz, Z (2013) New insights into cell cycle and DNA damage response machineries through high-resolution AMICO quantitative imaging cytometry. Cell Prolif 46:497-500

Showing the most recent 10 out of 372 publications