The goal of this competitive renewal application is to increase the clinical utility of labeled mAbs for cancer diagnosis and therapy by developing more effective strategies for labeling internalizing mAbs and mAb fragments with radioiodine nuclides and 211At. With the emergence of the epidermal growth factor receptor variant III (EGFRvIII) as a tumor-specific molecular target on glioma and other tumors, research during the previous grant period was focused on the development of strategies for labeling mAbs reactive with this rapidly internalizing mutant receptor. Our studies revealed that radio iodination of anti-EGFRvIII mAbs using reagents containing benzoates bearing charged substituent's or D-amino acid peptides significantly improved retention of radioactivity in EGFRvIII-expressing tumor cells and xenografts compared with mAbs labeled by conventional approaches. The most promising results were obtained with N5-(3-[*I]iodobenzoyl)-Lys5-N1-maleimido-D-Gly1- GEEEK ([*I]IB-Mal-D-GEEEK), which includes 3 D-glutamates to provide a negatively charged, proteolytically inert moiety and an iodobenzoyl group to minimize dehalogenation. Our hypothesis is that optimized labeling methods for internalizing mAbs such as anti-EGFRvIII based on the IB-Mal-D-GEEEK template will enhance tumor retention and tumor-to-normal tissue ratios, thereby improving their clinical potential as diagnostic and therapeutic agents. We propose to: 1) label anti-EGFRvIII mAbs and fragments with radioiodine nuclides and 211At using IB-Mal-D-GEEEK and its [211At]astatobenzoyl Mal-D-GEEEK analogue and to evaluate their potential as diagnostic and therapeutic radiopharmaceuticals;2) investigate strategies for improving the Mal- GEEEK reagent for labeling internalizing mAbs including alteration in D-peptide sequence (number and nature of negatively charged amino acids), use of a less hydrophobic dehalogenation resistant prosthetic group such as iodopyridine, incorporation of a cathepsin B cleavable linker, and coupling the radiohalogenation precursor to the mAb prior to the labeling reaction;3) investigate the nature of the low and high molecular weight labeled catabolites generated in tumor cells in vitro and tumor and normal tissues in vivo;4) evaluate the therapeutic efficacy of promising 131I- and 211At-labeled anti-EGFRvIII conjugates in athymic rodents with subcutaneous, intracranial, and neoplastic meningitis xenografts;and 5) With the best radio labeled anti-EGFRvIII conjugates, conduct all the toxicity, efficacy, dosimetry, and other FDA-required studies for Investigational New Drug permits, to all performance of clinical trials in malignant glioma patients under our Brain Tumor Center grant (NS20023

Public Health Relevance

Our goal is to develop methods for attaching iodine radio nuclides and 1-particle emitting 211At to monoclonal antibodies (mAbs) in such a way that the radioactivity remains trapped in the cancer cell after cellular metabolism of mAb. Although the proposed research is focused on improving the imaging and treatment of brain tumors and mAbs that target EGFRvIII, these labeled mAbs also might be useful in the management of other cancers that over express this tumor-specific receptor. Furthermore, these labeling methods should be applicable to other internalizing mAbs and fragments, increasing the potential impact of this work.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Clinical Molecular Imaging and Probe Development (CMIP)
Program Officer
Prasanna, Pat G
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
Schools of Medicine
United States
Zip Code
Pozzi, Oscar R; Zalutsky, Michael R (2017) Radiopharmaceutical chemistry of targeted radiotherapeutics, part 4: Strategies for 211At labeling at high activities and radiation doses of 211At ?-particles. Nucl Med Biol 46:43-49
D'Huyvetter, Matthias; De Vos, Jens; Xavier, Catarina et al. (2017) 131I-labeled Anti-HER2 Camelid sdAb as a Theranostic Tool in Cancer Treatment. Clin Cancer Res 23:6616-6628
Raghavan, Raghu; Howell, Roger W; Zalutsky, Michael R (2017) A model for optimizing delivery of targeted radionuclide therapies into resection cavity margins for the treatment of primary brain cancers. Biomed Phys Eng Express 3:
Zhou, Zhengyuan; Vaidyanathan, Ganesan; McDougald, Darryl et al. (2017) Fluorine-18 Labeling of the HER2-Targeting Single-Domain Antibody 2Rs15d Using a Residualizing Label and Preclinical Evaluation. Mol Imaging Biol 19:867-877
Vaidyanathan, Ganesan; McDougald, Darryl; Choi, Jaeyeon et al. (2016) N-Succinimidyl 3-((4-(4-[(18)F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([(18)F]SFBTMGMB): a residualizing label for (18)F-labeling of internalizing biomolecules. Org Biomol Chem 14:1261-71
Vaidyanathan, Ganesan; McDougald, Darryl; Choi, Jaeyeon et al. (2016) Preclinical Evaluation of 18F-Labeled Anti-HER2 Nanobody Conjugates for Imaging HER2 Receptor Expression by Immuno-PET. J Nucl Med 57:967-73
Vaidyanathan, Ganesan; McDougald, Darryl; Koumarianou, Eftychia et al. (2015) Synthesis and evaluation of 4-[18F]fluoropropoxy-3-iodobenzylguanidine ([18F]FPOIBG): A novel 18F-labeled analogue of MIBG. Nucl Med Biol 42:673-84
Slastnikova, Tatiana A; Rosenkranz, Andrey A; Zalutsky, Michael R et al. (2015) Modular nanotransporters for targeted intracellular delivery of drugs: folate receptors as potential targets. Curr Pharm Des 21:1227-38
Pruszynski, Marek; Koumarianou, Eftychia; Vaidyanathan, Ganesan et al. (2015) D-Amino acid peptide residualizing agents bearing N-hydroxysuccinimido- and maleimido-functional groups and their application for trastuzumab radioiodination. Nucl Med Biol 42:19-27
Pruszy?ski, Marek; ?yczko, Monika; Bilewicz, Aleksander et al. (2015) Stability and in vivo behavior of Rh[16aneS4-diol]211 at complex: a potential precursor for astatine radiopharmaceuticals. Nucl Med Biol 42:439-45

Showing the most recent 10 out of 153 publications