DNA damage inducers, i.e., genotoxins, are some of the most effective agents in cancer therapy. Persistent damage to the genomic DNA can activate programmed cell death. Therefore, fundamental understanding of genotoxin-induced cell death mechanisms holds the promise of enhancing the efficacy of cancer therapeutics. The varied responses of tumors to genotoxins are a reflection of the variable death responses to DNA damage among different normal cell types, which suggest developmental programs may set different thresholds for damage signals to trigger death. Studies from our laboratory have identified the nuclear Abl tyrosine kinase as a developmental context-dependent activator of cell death to DNA damage. Through tyrosine phosphorylation of the C-terminal repeated domain (CTD) of RNA polymerase II, we have found that Abl regulates RNA splicing in genotoxin-treated cells. The human genome contains approximately twenty thousand genes but encodes many more proteins through the alternative usage of variable exons. Alternative splicing has been shown to generate pro-death and anti-death protein isoforms from a single gene, underscoring the importance of splicing regulation in programmed cell death. There has not been a systematic study of the effects of genotoxins on alternative splicing. The proposed study will fill this gap by pursuing the splicing regulatory function of nuclear Abl. Specifically, we will (1) delineate the role of Abl in the alternative splicing of the CD44 gene, because we have found that activation of Abl leads to the exclusion of CD44 variable exons 4 and 5 in doxorubicin-treated cells;(2) conduct a large-scale survey of DNA damage-induced and Abl-dependent alternative splicing of several thousand genes using a fiber-optic bead array-based technology;(3) identify DNA damage-induced genomic binding sites for Abl using the human genome tiling arrays, because we have found that doxorubicin causes an enhanced association of Abl with the CD44 variable exon 5;(4) investigate the role of alternative splicing in cell death response to DNA damage by testing the hypothesis that doxorubicin specifically reduces the levels of CD44 variants to enhance death receptor-induced cell killing;and (5) construct mouse tumor models to investigate the role of nuclear Abl in tumor responses to chemotherapy. The proposed research will investigate a previously unappreciated effect of DNA damage on RNA splicing, through a previously unknown mechanism of splicing regulation by CTD tyrosine phosphorylation. Because Abl is not mutated in sporadic human cancers and because Abl can activate p53-independent cell death, results from the proposed research will shed light on how to exploit the pro-apoptotic function of nuclear Abl to kill tumor cells.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Basic Mechanisms of Cancer Therapeutics Study Section (BMCT)
Program Officer
Hildesheim, Jeffrey
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Internal Medicine/Medicine
Schools of Medicine
La Jolla
United States
Zip Code
Wang, Jean Y J (2014) The capable ABL: what is its biological function? Mol Cell Biol 34:1188-97
de Souza, Jorge E S; Fonseca, André F; Valieris, Renan et al. (2014) S-score: a scoring system for the identification and prioritization of predicted cancer genes. PLoS One 9:e94147
Manthey, Carolin F; Calabio, Christine B; Wosinski, Anna et al. (2014) Indispensable functions of ABL and PDGF receptor kinases in epithelial adherence of attaching/effacing pathogens under physiological conditions. Am J Physiol Cell Physiol 307:C180-9
Sridevi, P; Nhiayi, M K; Wang, J Y J (2013) Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity. Cell Death Differ 20:953-62
Tonino, S H; van Laar, J; van Oers, M H et al. (2011) ROS-mediated upregulation of Noxa overcomes chemoresistance in chronic lymphocytic leukemia. Oncogene 30:701-13
Preyer, Martin; Vigneri, Paolo; Wang, Jean Y J (2011) Interplay between kinase domain autophosphorylation and F-actin binding domain in regulating imatinib sensitivity and nuclear import of BCR-ABL. PLoS One 6:e17020
Stuart, Scott A; Wang, Jean Y J (2009) Ionizing radiation induces ATM-independent degradation of p21Cip1 in transformed cells. J Biol Chem 284:15061-70
Stuart, Scott A; Minami, Yosuke; Wang, Jean Y J (2009) The CML stem cell: evolution of the progenitor. Cell Cycle 8:1338-43
Lee, Shun J; Wang, Jean Y J (2009) Exploiting the promiscuity of imatinib. J Biol 8:30
Huang, Vera; Lu, Xin; Jiang, Yong et al. (2009) Effect of hydroxyurea on the promoter occupancy profiles of tumor suppressor p53 and p73. BMC Biol 7:35

Showing the most recent 10 out of 53 publications