The overall goal of this proposal is to develop differentiation therapy to supplement the treatment regimens for human myeloid leukemia. We will focus on the identification of the most effective analogs (deltanoids) of the physiological form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D) administered at low concentrations to leukemia cells in culture and study alterations in gene expression and other cellular changes. The deltanoids and 1,25D induce monocytic/macrophage-like differentiation and will also be administered in combination with nontoxic substances currently used as food preservatives or additives, or with potential for such use, to maximize the differentiation activity of of the deltanoids. Further enhancement of the activity of these differentiation agents will be explored by the addition of an anti-inflammatory inhibitor of an intracellular signaling pathway. Established lines of leukemia, as well as samples of leukemic cells freshly obtained from patients, will be used for studies of of cell differentiation. The rationale is provided by previous observation that antioxidants provide a reducing environment and induce expression of genes which complement the differentiation-inducing actions of deltanoid-responsive genes. Insight into differentiation control will be obtained by examination of signaling pathways with particular attention to MAPK pathways and to transcription factors. This will be accomplished by adding pharmacological agents, antisense oligonucleotides, siRNAs, transcription factor decoys, and transfected plasmid constructs to study the molecular consequences of these manipulations , which will be determined by immunoblotting, quantitative RT-PCR, immunoprecipitation, and other standard techniques. Differentiating cells will be monitored by determination of surface markers as well as the activity and the expression of various enzymes. The information obtained in basic studies will be utilized to guide development of a new generation of deltanoids and deltanoid combinations with co- inducers, while translational studies on leukemic cells ex vivo will serve to identify subgroups of myeloid leukemias most suitable for the initiation of clinical trials.

Public Health Relevance

Differentiation therapy, which depends on the activation of existing cellular programs rather than on toxic drugs to combat malignant tumors, is already effective as the treatment of some cancers. We propose to develop it as therapy for blood malignancy known as myeloid leukemia, which although kills approximately 15,000 people in USA every year, is unlikely to receive attention from commercial support for finding its cure. Thus, myeloid leukemia can be considered an orphan disease, and merits support from public sources for the development of novel therapy.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Chemo/Dietary Prevention Study Section (CDP)
Program Officer
Arya, Suresh
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Medicine & Dentistry of NJ
Schools of Medicine
United States
Zip Code
Pesakhov, Stella; Nachliely, Matan; Barvish, Zeev et al. (2016) Cancer-selective cytotoxic Ca2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget 7:31847-61
Wang, Xuening; Harrison, Jonathan S; Studzinski, George P (2016) BRAF signals to pro-apoptotic BIM to enhance AraC cytotoxicity induced in AML cells by Vitamin D-based differentiation agents. J Steroid Biochem Mol Biol :
Harrison, Jonathan S; Wang, Xuening; Studzinski, George P (2016) The role of VDR and BIM in potentiation of cytarabine-induced cell death in human AML blasts. Oncotarget 7:36447-36460
Wang, Xuening; Harrison, Jonathan S; Studzinski, George P (2016) Enhancement of arabinocytosine (AraC) toxicity to AML cells by a differentiation agent combination. J Steroid Biochem Mol Biol 164:72-78
Zheng, Ruifang; Wang, Xuening; Studzinski, George P (2015) 1,25-Dihydroxyvitamin D3 induces monocytic differentiation of human myeloid leukemia cells by regulating C/EBPβ expression through MEF2C. J Steroid Biochem Mol Biol 148:132-7
Wang, Xuening; Pesakhov, Stella; Harrison, Jonathan S et al. (2015) The MAPK ERK5, but not ERK1/2, inhibits the progression of monocytic phenotype to the functioning macrophage. Exp Cell Res 330:199-211
Studzinski, George P; Harrison, Jonathan S; Wang, Xuening et al. (2015) Vitamin D Control of Hematopoietic Cell Differentiation and Leukemia. J Cell Biochem 116:1500-12
Wang, Xuening; Pesakhov, Stella; Harrison, Jonathan S et al. (2014) ERK5 pathway regulates transcription factors important for monocytic differentiation of human myeloid leukemia cells. J Cell Physiol 229:856-67
Gocek, Elzbieta; Moulas, Anargyros N; Studzinski, George P (2014) Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Crit Rev Clin Lab Sci 51:125-37
Wang, Xuening; Pesakhov, Stella; Weng, Ashley et al. (2014) ERK 5/MAPK pathway has a major role in 1α,25-(OH)2 vitamin D3-induced terminal differentiation of myeloid leukemia cells. J Steroid Biochem Mol Biol 144 Pt A:223-7

Showing the most recent 10 out of 96 publications