Our long-term goal is to improve the efficacy of EGFR family-directed monoclonal antibody therapy with the overarching hypothesis that antibodies can be combined with other anti-tumor agents to promote host- protective adaptive immunity that improves cancer therapy. In the current funding period we have 1) defined tumor cell based determinants of anti-tumor efficacy and promotion of antibody-dependent cellular cytotoxicity (ADCC) such as c-Abl and protein kinase C-?, 2) demonstrated that effective antibody therapy promotes host-protective immune responses, and 3) employed a novel shRNA library screening strategy to identify Tex9 and other tumor cell-based determinants of immune rejection. We now propose to translate these findings into the clinic, and to develop innovative new approaches to improve antibody- initiated tumor rejection.
The first aim i s to define EGFR network-related signaling following therapy with cetuximab, nilotinib or the combination in a Phase I clinical trial of these drugs in patients with solid tumors.
The second aim i s to enhance antibody-dependent cellular cytotoxicity (ADCC) and improve its in vivo anti-tumor effects. We will test the hypotheses that 1) nilotinib therapy or protein kinase C-? knockdown enhance ADCC and subsequent antigen presentation, and 2) strategies to enhance ADCC promote the anti-tumor effects of cetuximab.
The third aim i s to identify new tumor cell-based molecular determinants of immune rejection in murine models. We have screened a barcoded murine whole-genome shRNA library in vivo and identified genes whose knockdown in EO771 breast tumor cells selectively enriches or depletes such cells in tumors in NSG, WT C57Bl/6 and SCID C57Bl/6 mice. We hypothesize that in vivo genomic screening can identify new targets that alter immune rejection initiated by monoclonal antibody therapy or vaccination. The successful execution of this work will have high impact by 1) defining the value of synthetic lethal screening to identify MAb-based combinations (Aim 1), 2) demonstrating new ways to promote ADCC-induced host protection (Aim 2), and 3) defining new targets and pathways that regulate tumor cell-based sensitivity and resistance to antibody-initiated host immunity (Aim 3). These results will have resonance for the field of tumor immunity.

Public Health Relevance

Monoclonal antibodies (MAb) are useful treatments for many tumor types, but new approaches are needed to improve therapy outcomes.
We aim to improve the ability of MAb to directly kill cancer cells, and to stimulate the body's immune system so that people can be immunized against their cancers to prevent or delay relapse or disease worsening.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Cancer Immunopathology and Immunotherapy Study Section (CII)
Program Officer
Yovandich, Jason L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Georgetown University
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Kim, B; Wang, S; Lee, J M et al. (2015) Synthetic lethal screening reveals FGFR as one of the combinatorial targets to overcome resistance to Met-targeted therapy. Oncogene 34:1083-93
Surana, Rishi; Wang, Shangzi; Xu, Wei et al. (2014) IL4 limits the efficacy of tumor-targeted antibody therapy in a murine model. Cancer Immunol Res 2:1103-12
Gleason, Michelle K; Ross, Julie A; Warlick, Erica D et al. (2014) CD16xCD33 bispecific killer cell engager (BiKE) activates NK cells against primary MDS and MDSC CD33+ targets. Blood 123:3016-26
Shivapurkar, Narayan; Weiner, Louis M; Marshall, John L et al. (2014) Recurrence of early stage colon cancer predicted by expression pattern of circulating microRNAs. PLoS One 9:e84686
Murray, Joseph C; Aldeghaither, Dalal; Wang, Shangzi et al. (2014) c-Abl modulates tumor cell sensitivity to antibody-dependent cellular cytotoxicity. Cancer Immunol Res 2:1186-98
Smaglo, Brandon G; Aldeghaither, Dalal; Weiner, Louis M (2014) The development of immunoconjugates for targeted cancer therapy. Nat Rev Clin Oncol 11:637-48
Mehra, Ranee; Serebriiskii, Ilya G; Burtness, Barbara et al. (2013) Aurora kinases in head and neck cancer. Lancet Oncol 14:e425-35
Sukhanova, Anna; Gorin, Andrey; Serebriiskii, Ilya G et al. (2013) Targeting C4-demethylating genes in the cholesterol pathway sensitizes cancer cells to EGF receptor inhibitors via increased EGF receptor degradation. Cancer Discov 3:96-111
Weiner, Louis M; Murray, Joseph C; Shuptrine, Casey W (2012) Antibody-based immunotherapy of cancer. Cell 148:1081-4
Ratushny, V; Pathak, H B; Beeharry, N et al. (2012) Dual inhibition of SRC and Aurora kinases induces postmitotic attachment defects and cell death. Oncogene 31:1217-27

Showing the most recent 10 out of 42 publications