Extracellular proteolysis is an essential mechanism that mediates tissue homeostasis in the body. The matrix metalloproteinases (MMPs) are key players in the molecular communication between normal breast epithelium and its microenvironment during development. In breast cancer, the MMP profile is often severely altered, leading to unregulated tumor growth, tissue remodeling, inflammation, tissue invasion and metastasis. We have studied the role of MMPs and the extracellular matrix (ECM) in mammary development and cancer for 20 years. Our studies have led to an understanding of the morphogenetic and tumor-promoting functions of MMPs, as well as to basic cellular and molecular mechanisms underlying branching morphogenesis, collective invasion and stem cell function. Using an integrated series of assays with genetically modified mice and mammary cells, organotypic culture models, in vivo transplantation systems and imaging technology, we have gained significant insights into molecular mechanisms underlying altered epithelial cell function. One aspect of MMP function that is currently reorienting our thinking is the discovery of non-proteolytic functions of MMPs. We have found that MMP3 regulates Wnt signaling and alters mammary stem cells. Concentrating on MMP3, and to a lesser extent, MMP9 and MMP2, we will use structure-function studies in vivo to determine non-proteolytic and proteolytic functions, new accurate methods for evaluating mammary adult stem cells in vivo and in culture. Given our novel insights indicating that, depending on the circumstances, MMPs may function independently of their proteolytic activity, we now propose to (1) further analyze the mechanisms by which non-proteolytic functions of MMPs regulate mammary epithelial morphogenesis;(2) determine how mammary stem cells are regulated by MMPs;and (3) evaluate the role that extracellular matrix and MMP signaling in the tumor microenvironment play in regulating mammary neoplastic progression and metastasis. Understanding the molecular mechanisms of this complex interplay between malignant cancer cells and the surrounding non- malignant stroma represents one of the major challenges in cancer research, which once understood, will foster new approaches to cancer therapy,

Public Health Relevance

A cure for breast cancer, the most common cancer in women, will require understanding the molecular mechanisms of the complex interplay between breast cancer cells and the surrounding non-malignant stromal microenvironment. To address this major challenge in cancer research, we will investigate the extracellular matrix metalloproteinase genes that play an important role in breast stem cell growth, tissue remodeling and invasion and metastasis. Once understood, these insights will foster the development of novel approaches in breast cancer therapy.

Agency
National Institute of Health (NIH)
Type
Research Project (R01)
Project #
5R01CA057621-22
Application #
8744263
Study Section
Tumor Microenvironment Study Section (TME)
Program Officer
Snyderwine, Elizabeth G
Project Start
Project End
Budget Start
Budget End
Support Year
22
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Hagerling, Catharina; Werb, Zena (2016) Neutrophils: Critical components in experimental animal models of cancer. Semin Immunol 28:197-204
Chou, Jonathan; Chan, Matilda F; Werb, Zena (2016) Metalloproteinases: a Functional Pathway for Myeloid Cells. Microbiol Spectr 4:
Koledova, Zuzana; Zhang, Xiaohong; Streuli, Charles et al. (2016) SPRY1 regulates mammary epithelial morphogenesis by modulating EGFR-dependent stromal paracrine signaling and ECM remodeling. Proc Natl Acad Sci U S A 113:E5731-40
Depeille, Philippe; Henricks, Linda M; van de Ven, Robert A H et al. (2015) RasGRP1 opposes proliferative EGFR-SOS1-Ras signals and restricts intestinal epithelial cell growth. Nat Cell Biol 17:804-15
Kim, Minji; M Shewan, Annette; Ewald, Andrew J et al. (2015) p114RhoGEF governs cell motility and lumen formation during tubulogenesis through a ROCK-myosin-II pathway. J Cell Sci 128:4317-27
Werb, Zena; Lu, Pengfei (2015) The Role of Stroma in Tumor Development. Cancer J 21:250-3
Plaks, Vicki; Boldajipour, Bijan; Linnemann, Jelena R et al. (2015) Adaptive Immune Regulation of Mammary Postnatal Organogenesis. Dev Cell 34:493-504
Diamond, Marc I; Cai, Shirong; Boudreau, Aaron et al. (2015) Subcellular localization and Ser-137 phosphorylation regulate tumor-suppressive activity of profilin-1. J Biol Chem 290:9075-86
Plaks, Vicki; Kong, Niwen; Werb, Zena (2015) The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 16:225-38
Hagerling, Catharina; Casbon, Amy-Jo; Werb, Zena (2015) Balancing the innate immune system in tumor development. Trends Cell Biol 25:214-20

Showing the most recent 10 out of 213 publications