The t(8;21) is one of the most frequent chromosomal translocations associated with acute myeloid leukemia (AML). It fuses the DNA binding domain of AML1 (RUNX1) to nearly all of ETO (MTG8). However, an alternatively spliced form of AML1-ETO termed 9a, which deletes the C-terminal NH3 and NH4 conserved domains of ETO, is much more leukemogenic when expressed in murine stem and myeloid progenitor cells. The C-terminal domains of ETO/MTG family members also suffer point mutations in solid tumors and the NH4 domain of MTG16 is deleted by the inv(16)(p13.3q24.3), which fuses MTG16 to GLIS2. The short latency and high penetrance of AML caused by AE9a and the inactivation of NH4 in other cancers, suggests that proteins associating with the C-terminus of MTGs and AML1-ETO provide a barrier to tumor/leukemia development. Yeast two-hybrid (Y2H) screens using MTG family members identified factors that regulate RNA Pol II pausing and elongation that associated with the C-terminus of MTGs, which is deleted in the AE9a isoform. Analysis of Mtg16-/- and Mtg8-/- knockout mice suggested that these factors are key mediators of the knock out phenotypes and that MTGs are negative regulators of transcription elongation. In addition, cancer-associated point mutations disrupt the association between MTGs or AML1-ETO and elongation factors, further suggesting that the association of AML1-ETO or MTGs with elongation factors mediates the barrier to leukemia. Therefore, we hypothesize that AE9a releases elongation factors from negative regulation to promote AML development. This hypothesis will be directly tested genetically using cancer-associated point mutations that affect binding to elongation factors and by the use of innovative methods that measure RNA polymerase II pausing and elongation. We also hypothesize that these data begin to explain why t(8;21) containing cells are so sensitive to inhibitors that target transcriptional elongation and we will directly test this hypothesis by measuring how these drugs affect transcription in t(8;21)-containing cells.

Public Health Relevance

The t(8;21) occurs in roughly 10% of the acute myeloid leukemia cases and about half of these patients will suffer relapse with a poor prognosis. This work will define how the fusion protein made by this chromosomal translocation causes leukemia. We will use this information to test new therapeutic strategies for the treatment of this deadly disease, and at the same time determine how these new drugs work, so that we can better use these compounds in the future.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA064140-25
Application #
9487167
Study Section
Cancer Genetics Study Section (CG)
Program Officer
Duglas Tabor, Yvonne
Project Start
1994-07-01
Project End
2019-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
25
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Vanderbilt University Medical Center
Department
Biochemistry
Type
Schools of Medicine
DUNS #
965717143
City
Nashville
State
TN
Country
United States
Zip Code
37240
Heaster, Tiffany M; Walsh, Alex J; Zhao, Yue et al. (2018) Autofluorescence imaging identifies tumor cell-cycle status on a single-cell level. J Biophotonics 11:
Stengel, Kristy R; Barnett, Kelly R; Wang, Jing et al. (2017) Deacetylase activity of histone deacetylase 3 is required for productive VDJ recombination and B-cell development. Proc Natl Acad Sci U S A 114:8608-8613
Liu, Qi; Wang, Jing; Zhao, Yue et al. (2017) Identification of active miRNA promoters from nuclear run-on RNA sequencing. Nucleic Acids Res 45:e121
Kim, H-G; LeGrand, J; Swindle, C S et al. (2017) The assembly competence domain is essential for inv(16)-associated acute myeloid leukemia. Leukemia 31:2267-2271
Zhao, Yue; Liu, Qi; Acharya, Pankaj et al. (2016) High-Resolution Mapping of RNA Polymerases Identifies Mechanisms of Sensitivity and Resistance to BET Inhibitors in t(8;21) AML. Cell Rep 16:2003-16
Adams, Clare M; Hiebert, Scott W; Eischen, Christine M (2016) Myc Induces miRNA-Mediated Apoptosis in Response to HDAC Inhibition in Hematologic Malignancies. Cancer Res 76:736-48
Stengel, Kristy R; Zhao, Yue; Klus, Nicholas J et al. (2015) Histone Deacetylase 3 Is Required for Efficient T Cell Development. Mol Cell Biol 35:3854-65
Williams, Christopher S; Bradley, Amber M; Chaturvedi, Rupesh et al. (2013) MTG16 contributes to colonic epithelial integrity in experimental colitis. Gut 62:1446-55
Wells, Christina E; Bhaskara, Srividya; Stengel, Kristy R et al. (2013) Inhibition of histone deacetylase 3 causes replication stress in cutaneous T cell lymphoma. PLoS One 8:e68915
Summers, Alyssa R; Fischer, Melissa A; Stengel, Kristy R et al. (2013) HDAC3 is essential for DNA replication in hematopoietic progenitor cells. J Clin Invest 123:3112-23

Showing the most recent 10 out of 69 publications