Normal as well as neoplastic cells invade surrounding tissues by mobilizing proteolytic enzymes that allow them to degrade the structural barriers established by the extracellular matrix. One group of proteinases, known as the matrix-degrading metalloproteinases or MMPs, is currently believed to play a prominent role in matrix remodeling events since these enzymes can, in concert, degrade all of the major proteinaceous components of the extracellular matrix including collagens, elastin and proteoglycans. Recently, the first membrane-anchored member of the MMP family, termed the membrane type-1 MMP (MT1-MMP), was identified and shown to be expressed not only in normal mesenchymal/epithelial cell types, but also at heightened levels in a variety of human carcinomas. Based on the ability of MT1-MMP to activate progelatinase A and/or collagenase-3, it has been postulated that this metalloproteinase axis may act as the """"""""master switch"""""""" that regulates the expression of the tissue-invasive phenotype. However, increasing evidence suggests that MT1-MMP plays a direct and critical - role in regulating cell-matrix interactions. More recent data now indicate that MT1-MMP activity may be complemented by a second, membrane-anchored MMP, termed MT2-MMP. While little is known with regard to MT2-MMP structure or function, the protease is postulated to play a dominant, and heretofore, unsuspected role in regulating normal and neoplastic epithelial cell function. To this end, we seek to use a series of molecular, genetic and cellular approaches to i) characterize MT2-MMP structure and function relationships in extracellular matrix degradation and invasion, ii) define the relative roles of MT2-MMP and MT1-MMP in normal tissue development and iii) characterize the functional impact of MT2-MMP and/or MT1-MMP on cancer growth, invasion and metastasis in vivo. These studies should provide new insights into the role of the MT-MMPs in normal as well as neoplastic cell populations and define their potential importance as targets for novel therapeutic interventions.

Public Health Relevance

These studies should provide new insights into the role of the MT-MMPs in normal and neoplastic cell populations and define their potential importance as targets for novel therapeutic interventions.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Woodhouse, Elizabeth
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Internal Medicine/Medicine
Schools of Medicine
Ann Arbor
United States
Zip Code
Feinberg, Tamar Y; Rowe, R Grant; Saunders, Thomas L et al. (2016) Functional roles of MMP14 and MMP15 in early postnatal mammary gland development. Development 143:3956-3968
Wolf, Katarina; Te Lindert, Mariska; Krause, Marina et al. (2013) Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J Cell Biol 201:1069-84
Tang, Yi; Rowe, R Grant; Botvinick, Elliot L et al. (2013) MT1-MMP-dependent control of skeletal stem cell commitment via a β1-integrin/YAP/TAZ signaling axis. Dev Cell 25:402-16
Willis, A L; Sabeh, F; Li, X-Y et al. (2013) Extracellular matrix determinants and the regulation of cancer cell invasion stratagems. J Microsc 251:250-60
Wu, Zhao-Qiu; Brabletz, Thomas; Fearon, Eric et al. (2012) Canonical Wnt suppressor, Axin2, promotes colon carcinoma oncogenic activity. Proc Natl Acad Sci U S A 109:11312-7
Koenig, Gerald C; Rowe, R Grant; Day, Sharlene M et al. (2012) MT1-MMP-dependent remodeling of cardiac extracellular matrix structure and function following myocardial infarction. Am J Pathol 180:1863-78
Shimizu-Hirota, Ryoko; Xiong, Wanfen; Baxter, B Timothy et al. (2012) MT1-MMP regulates the PI3Kδ·Mi-2/NuRD-dependent control of macrophage immune function. Genes Dev 26:395-413
Rowe, R Grant; Keena, Daniel; Sabeh, Farideh et al. (2011) Pulmonary fibroblasts mobilize the membrane-tethered matrix metalloprotease, MT1-MMP, to destructively remodel and invade interstitial type I collagen barriers. Am J Physiol Lung Cell Mol Physiol 301:L683-92
Lu, Changlian; Li, Xiao-Yan; Hu, Yuexian et al. (2010) MT1-MMP controls human mesenchymal stem cell trafficking and differentiation. Blood 115:221-9
Chun, Tae-Hwa; Inoue, Mayumi; Morisaki, Hiroko et al. (2010) Genetic link between obesity and MMP14-dependent adipogenic collagen turnover. Diabetes 59:2484-94

Showing the most recent 10 out of 28 publications