FAMILIAL AND EARLY ONSET COLORECTAL CANCER ABSTRACT Colorectal cancer (CRC) is a common and potentially lethal disease that usually occurs in older people, and is a sporadic process principally related to dietary and other environmental influences. However, about 4% of CRC can be attributed to specific genetic syndromes such as Lynch Syndrome, familial adenomatous polyposis, and a few other rare diseases. Another 20-30% of patients with CRC have a first degree relative with CRC, but it is not known how much of this familiality is due to shared genes rather than shared environmental factors. In any event, we have few methods of identifying these high-risk people. CRC is particularly suited to preventive strategies because of the availability of multiple effective screening modalities, but we cannot screen everyone frequently, and these resources would be more effective if they were used more intensively in those people at greatest risk for the disease, and more sparingly in those individuals at ordinary or lower risk. Also, about 5-10% of CRC occurs in people who are relatively young, <50 years old, and even ambitious screening recommendations are inadequate for these individuals. The goals of this project are to study individuals who are at increased risk for CRC on a familial basis, or for non-familial early-onset CRC, so that they might be offered appropriately intensive screening to mitigate their risk of dying of cancer. The focus of the application will be on alterations of the DNA mismatch repair (MMR) genes. We have used collaborations to accumulate a large number of routine and unique CRC specimens to look for a number of previously unexplored possibilities. Methylation-induced silencing of the MLH1 gene occurs because of a CpG island in its promoter, and accounts for about 12% of CRCs. We have developed a unique model to study the regulation of methylation of the MLH1 gene in vitro and in vivo. We will test the hypothesis that a unique demethylating agent discovered in our laboratory can reverse this process in vitro and in vivo. We will also look for evidence of methylation-induced silencing of the MSH2 and MSH6 genes, which also have CpG islands in their promoters, and should be susceptible to the same perturbation. We will look for mechanisms responsible for early-onset CRC in patients who do not appear to have a family history of this by testing a new panel of microsatellite markers for microsatellite instability (MSI), by looking for the promoter methylator phenotype in these tumors, and by using novel methods to look for low-level MSI. Finally, we will test the hypothesis that low-level MSI is caused by the down-regulation of the MSH3 gene, and that this process facilitates the generation of highly metastatic clones within a growing tumor mass. The broad aim of this application is to develop additional tools that increase our ability to more precisely categorize CRCs, to develop more accurate interpretations of the mutational signatures in CRCs, which will permit us to deliver more highly personalized treatment to CRC patients, particularly those who are young or have positive family histories of this disease.

Public Health Relevance

FAMILIAL AND EARLY-ONSET COLORECTAL CANCER PROJECT NARRATIVE Colorectal cancer is a common disease, and many cases occur due to familial factors, only some of which are currently understood. This project is aimed toward finding the genetic or epigenetic basis of familial clusters of colorectal cancer, and the genetic or epigenetic factors that affect people who develop this disease before age 50, which is the age at which routine screening begins. We also plan to test a strategy to correct epigenetic abnormalities that might be involved in the risk for early-onset cancer.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA072851-17
Application #
8249110
Study Section
Gastrointestinal Cell and Molecular Biology Study Section (GCMB)
Program Officer
Thurin, Magdalena
Project Start
1996-05-10
Project End
2014-04-30
Budget Start
2012-05-01
Budget End
2013-04-30
Support Year
17
Fiscal Year
2012
Total Cost
$332,512
Indirect Cost
$119,363
Name
Baylor Research Institute
Department
Type
DUNS #
145745022
City
Dallas
State
TX
Country
United States
Zip Code
75204
Wang, Wei; Kandimalla, Raju; Huang, Hao et al. (2018) Molecular subtyping of colorectal cancer: Recent progress, new challenges and emerging opportunities. Semin Cancer Biol :
Ravindranathan, Preethi; Pasham, Divya; Balaji, Uthra et al. (2018) A combination of curcumin and oligomeric proanthocyanidins offer superior anti-tumorigenic properties in colorectal cancer. Sci Rep 8:13869
Ozawa, Tsuyoshi; Kandimalla, Raju; Gao, Feng et al. (2018) A MicroRNA Signature Associated With Metastasis of T1 Colorectal Cancers to Lymph Nodes. Gastroenterology 154:844-848.e7
Boland, Patrick M; Yurgelun, Matthew B; Boland, C Richard (2018) Recent progress in Lynch syndrome and other familial colorectal cancer syndromes. CA Cancer J Clin 68:217-231
Kandimalla, Raju; Gao, Feng; Matsuyama, Takatoshi et al. (2018) Genome-wide Discovery and Identification of a Novel miRNA Signature for Recurrence Prediction in Stage II and III Colorectal Cancer. Clin Cancer Res 24:3867-3877
Ruiz-Bañobre, Juan; Goel, Ajay (2018) DNA Mismatch Repair Deficiency and Immune Checkpoint Inhibitors in Gastrointestinal Cancers. Gastroenterology :
Perea, José; García, Juan L; Corchete, Luis et al. (2018) Redefining synchronous colorectal cancers based on tumor clonality. Int J Cancer :
Toden, Shusuke; Ravindranathan, Preethi; Gu, Jinghua et al. (2018) Oligomeric proanthocyanidins (OPCs) target cancer stem-like cells and suppress tumor organoid formation in colorectal cancer. Sci Rep 8:3335
Weng, Wenhao; Liu, Na; Toiyama, Yuji et al. (2018) Novel evidence for a PIWI-interacting RNA (piRNA) as an oncogenic mediator of disease progression, and a potential prognostic biomarker in colorectal cancer. Mol Cancer 17:16
Takehara, Yuko; Nagasaka, Takeshi; Nyuya, Akihiro et al. (2018) Accuracy of four mononucleotide-repeat markers for the identification of DNA mismatch-repair deficiency in solid tumors. J Transl Med 16:5

Showing the most recent 10 out of 178 publications