Bladder cancer kills 12,000 Americans each year, but few research projects are targeted to this disease. For most of these patients, the cause of death is attributable to metastatic spread, commonly to the lungs. Hence, a fuller understanding of the molecular mechanisms driving the dissemination and growth of bladder cancer to the lungs is likely to present new therapeutic opportunities. The Ras family small GTPases RalA and RalB have been shown to play important roles in human tumor formation and progression. Specifically, RalB is elevated in bladder cancer and promotes migration and metastasis. Genome-wide analysis of RalB dependent changes in gene expression revealed that RalB regulates the expression of CD24, a GPI-linked glycoprotein, necessary for the growth of many human cancer cell lines. CD24 is also a biomarker of metastasis in bladder cancer. RalB induction of CD24 expression involves the Ral effector RalBP1, which is also elevated in bladder cancer, and the zinc finger transcription factor RREB1. Our Guiding Hypothesis is that a novel RalB ? RalBP1 ? RREB1 ? CD24 signaling pathway that was discovered by this project, promotes bladder cancer metastasis. To test this hypothesis we propose the following Specific Aims:
In Aim 1, the mechanistic contributions of RalB and RalBP1 to bladder cancer lung metastasis will be dissected using mutants of both that are impaired in specific functions and effector interactions. Since RalA does not promote migration or metastasis, we will use RalA/RalB chimeras to identify RalB sequences necessary for metastasis and subsequently proteins that specifically bind to RalB via those regions. Successful completion of this aim should result in new targets for drug discovery.
Aim 2 will determine how RalB and RalBP1 regulate RREB1 activity and evaluate the requirement for RREB1 regulation in CD24 expression. Since genome-wide profiling of RalB dependent gene expression led to the discovery of the metastasis biomarker CD24, we will use a human bladder cancer tissue repository and advanced computational tools to generate a gene signature of RalB expression. Given the importance of RalB in bladder cancer progression, the ability of this signature to predict the development of metastatic disease in patients will be evaluated. Eventually, this signature may be of prognostic value and an avenue to select patients for individualized RalB targeted therapy.
In Aim 3 we will evaluate the requirement for CD24 in bladder cancer metastasis. An existing CD24 knockout mouse will be used to study the role of CD24 in a chemical carcinogenesis model of bladder cancer formation, invasion, and metastasis. In a preclinical study, we will also test whether anti-CD24 immunotherapy can block the growth of established human bladder cancer lung metastases. These mechanistic studies of a novel signaling pathway will provide molecular information on how Ral GTPases promote bladder cancer lung metastasis, thus providing both a framework for future patient risk stratification and opportunities for novel therapies of metastatic disease. PROJECT NARRATIVE Bladder cancer kills 12,000 Americans each year, but few research projects are targeted to this disease. For most of these patients, the cause of death is attributable to metastatic spread, commonly to the lungs. The goal of this project is to understand the mechanisms that underlie lung metastasis in human bladder cancer and use this knowledge to predict and treat this condition in patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Woodhouse, Elizabeth
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
Schools of Medicine
United States
Zip Code
Agarwal, Neeraj; Dancik, Garrett M; Goodspeed, Andrew et al. (2016) GON4L Drives Cancer Growth through a YY1-Androgen Receptor-CD24 Axis. Cancer Res 76:5175-85
Nickerson, M L; Witte, N; Im, K M et al. (2016) Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response. Oncogene :
Jones, Robert T; Felsenstein, Kenneth M; Theodorescu, Dan (2016) Pharmacogenomics: Biomarker-Directed Therapy for Bladder Cancer. Urol Clin North Am 43:77-86
Hensel, Jonathan; Duex, Jason E; Owens, Charles et al. (2015) Patient Mutation Directed shRNA Screen Uncovers Novel Bladder Tumor Growth Suppressors. Mol Cancer Res 13:1306-15
Zhao, D; Besser, A H; Wander, S A et al. (2015) Cytoplasmic p27 promotes epithelial-mesenchymal transition and tumor metastasis via STAT3-mediated Twist1 upregulation. Oncogene 34:5447-59
Borah, Sumit; Xi, Linghe; Zaug, Arthur J et al. (2015) Cancer. TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 347:1006-10
Earl, Julie; Rico, Daniel; Carrillo-de-Santa-Pau, Enrique et al. (2015) The UBC-40 Urothelial Bladder Cancer cell line index: a genomic resource for functional studies. BMC Genomics 16:403
Marie, Chelsea; Verkerke, Hans P; Theodorescu, Dan et al. (2015) A whole-genome RNAi screen uncovers a novel role for human potassium channels in cell killing by the parasite Entamoeba histolytica. Sci Rep 5:13613
Bettegowda, Chetan; Sausen, Mark; Leary, Rebecca J et al. (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6:224ra24
Dancik, Garrett M; Owens, Charles R; Iczkowski, Kenneth A et al. (2014) A cell of origin gene signature indicates human bladder cancer has distinct cellular progenitors. Stem Cells 32:974-82

Showing the most recent 10 out of 59 publications