Optical coherence tomography (OCT) is an emerging imaging technology which performs high resolution, cross-sectional and three-dimensional (3D) imaging of tissue morphology in situ and in real time. Optical coherence microscopy (OCM) combines OCT with confocal microscopy to achieve cellular level resolution with an extended imaging depth. The hypothesis is that OCT and OCM can function as a type of "optical biopsy" to visualize early neoplastic changes in vivo without excision and processing of specimens. If successful, these imaging technologies could guide biopsy to reduce sampling error and improve sensitivity. This program vertically integrates technology development, biomedical research and clinical studies in a collaborative effort between investigators at the Massachusetts Institute of Technology, Beth Israel Deaconess Medical Center, Boston VA Healthcare System, and Harvard Medical School.
The specific aims are: 1. Develop Ultrahigh Resolution 3D-OCT Imaging Technology. 3D-OCT will enable new visualization techniques such as generation of arbitrary cross-sectional images, projection views similar to microscopy, improved quantitative measurements of morphology and virtual manipulation of tissue for visualizing structure. We propose to develop new technology for clinical endoscopic 3D-OCT to achieve imaging speeds of 500,000 axial scans / second with <5 ?m axial image resolution, factors of ~100x faster speed and ~2-3x finer resolution than standard OCT. 2. Develop Endoscopic Optical Coherence Microscopy (OCM) for Cellular Level Imaging. Developing techniques for cellular resolution endoscopy is a longstanding challenge in biomedical imaging and promises to improve early diagnosis of cancer. Optical coherence microscopy (OCM) is an in vivo cellular imaging technique which combines OCT with confocal microscopy. We propose to develop new OCM technology to enable cellular level endoscopic imaging. 3. Ex Vivo Imaging Studies Using 3D-OCT and OCM. Ex vivo imaging is a powerful methodology to establish correlations between OCT and OCM diagnostic features and histopathology. We will investigate upper and lower Gl tract pathologies including Barrett's esophagus, dysplasia, and adenocarcinoma, as well as dysplasia and adenocarcinoma in inflammatory bowel disease. We will also investigate breast malignancies. These studies will establish correspondence with histology, develop new visualization methods, validate computer assisted tissue classification techniques, and assess pilot applications in new pathologies. 4. Clinical Endoscopic Imaging of the Upper and Lower Gastrointestinal Tract. The hypothesis of this aim is that 3D-OCT and OCM imaging in the gastrointestinal tract can identify neoplastic changes. We will investigate Barrett's esophagus, dysplasia, and adenocarcinoma in the upper GI tract and dysplasia and adenocarcinoma of the colon in inflammatory bowel diseases in the lower GI tract. If successful, the proposed research will develop and demonstrate new imaging technology which will augment gastrointestinal endoscopy and open the door for improved detection of a wide range of neoplasias.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Biomedical Imaging Technology Study Section (BMIT)
Program Officer
Tandon, Pushpa
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
Engineering (All Types)
Schools of Engineering
United States
Zip Code
Alasil, Tarek; Ferrara, Daniela; Adhi, Mehreen et al. (2015) En face imaging of the choroid in polypoidal choroidal vasculopathy using swept-source optical coherence tomography. Am J Ophthalmol 159:634-43
Ahsen, Osman O; Lee, Hsiang-Chieh; Giacomelli, Michael G et al. (2014) Correction of rotational distortion for catheter-based en face OCT and OCT angiography. Opt Lett 39:5973-6
Ferrara, Daniela; Mohler, Kathrin J; Waheed, Nadia et al. (2014) En face enhanced-depth swept-source optical coherence tomography features of chronic central serous chorioretinopathy. Ophthalmology 121:719-26
Tao, Yuankai K; Shen, Dejun; Sheikine, Yuri et al. (2014) Assessment of breast pathologies using nonlinear microscopy. Proc Natl Acad Sci U S A 111:15304-9
Liu, Jonathan J; Witkin, Andre J; Adhi, Mehreen et al. (2014) Enhanced vitreous imaging in healthy eyes using swept source optical coherence tomography. PLoS One 9:e102950
Zhang, Ning; Tsai, Tsung-Han; Ahsen, Osman O et al. (2014) Compact piezoelectric transducer fiber scanning probe for optical coherence tomography. Opt Lett 39:186-8
Choi, WooJhon; Potsaid, Benjamin; Jayaraman, Vijaysekhar et al. (2013) Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source. Opt Lett 38:338-40
Ahsen, Osman O; Tao, Yuankai K; Potsaid, Benjamin M et al. (2013) Swept source optical coherence microscopy using a 1310 nm VCSEL light source. Opt Express 21:18021-33
Grulkowski, Ireneusz; Liu, Jonathan J; Potsaid, Benjamin et al. (2013) High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source. Opt Lett 38:673-5
Grulkowski, Ireneusz; Liu, Jonathan J; Zhang, Jason Y et al. (2013) Reproducibility of a long-range swept-source optical coherence tomography ocular biometry system and comparison with clinical biometers. Ophthalmology 120:2184-90

Showing the most recent 10 out of 80 publications