Our long-term goals are to elucidate protein kinase C (PKC) signaling mechanisms that contribute to cancer and translate these mechanistic insights into better prognostic and treatment strategies. In previous funding periods, we discovered that PKC? is an oncogene in non-small cell lung cancer (NSCLC) the leading cause of cancer death in the United States, elucidated a major oncogenic PKC? signaling pathway, and developed a therapeutic agent that targets oncogenic PKC? signaling that is currently being evaluated in the clinic. During the current funding period we showed that: 1) PKC? forms an oncogenic PKC?/Par6 signaling complex in the cytoplasm of NSCLC cells that is necessary for cell proliferation and invasion in vitro, and tumor formation in vivo;2) the guanine nucleotide exchange factor (GEF) Ect2 binds the PKC?/Par6 complex and activates Rac1, a key downstream effector of this complex;3) PKC? regulates the intracellular location and oncogenic activity of Ect2 through direct binding and phosphorylation;4) matrix metalloproteinase 10 (Mmp10) is a critical downstream effector of the PKC?/Ect2/Par6/Rac1 signaling axis that is required for NSCLC cell proliferation and invasion in vitro, and Kras-mediated lung tumorigenesis in vivo;and 5) both PKC? and Mmp10 are required for Kras-mediated transformation of bronchio-alveolar stem cells (BASCs), putative lung tumorinitiating cells (TICs) in vivo. Our preliminary studies indicate that: 1) the PKC?/Ect2/Par6/Rac1/Mmp10 signaling axis maintains a tumor-initiating cell phenotype in NSCLC cells characterized by stem-like behavior and enhanced tumorigenicity;2) a significant pool of cellular Ect2 localizes to the nucleolus in a PKC?- dependent manner where it regulates ribosomal RNA (rRNA) transcription;3) PKC? transcriptionally activates cell autonomous hedgehog (Hh) signaling in NSCLC tumor-initiating cells;and 4) PKC? regulates recruitment of the stem cell pluripotency factor Sox2 to th promoter region of the gene encoding Hedgehog Acyl Transferase (HHAT), an enzyme that catalyzes a key step in the production of Hh ligand. Based on these data, we hypothesize that: 1) PKC?-mediated transformation involves regulation of Ect2 nucleolar localization and pre-ribosomal RNA synthesis;2) Ect2 signaling is required for Kras-mediated BASC transformation and lung tumorigenesis in vivo;3) PKC? maintains a lung tumor-initiating cell phenotype, at least in part, through Sox2-mediated induction of HHAT transcription and activation of a cell autonomous Hh signaling axis;and 4) HHAT, a PKC?-dependent transcriptional target, plays a key role in lung tumor-initiating activity in vivo. These hypotheses will be tested through completion of four interrelated specific aims to: 1) determine the mechanism by which PKC? and Ect2 regulate ribosomal RNA transcription;2) assess the role of Ect2 in Kras-mediated lung tumorigenesis;3) determine the mechanism by which PKC? regulates hedgehog acyl-transferase (HHAT) expression;and 4) assess the role of HHAT in lung tumorigenesis.

Public Health Relevance

Lung cancer is the number one cause of cancer death in the United States. Protein kinase C? (PKC?) is an oncogene, prognostic marker and therapeutic target in lung cancer. This project will elucidate novel PKC? signaling mechanisms that drive lung cancer growth, assess the importance of PKC? signaling in lung cancer development, progression and spread in pre-clinical animal models in vivo, and determine the translational relevance of these findings to primary human lung cancers.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Tumor Cell Biology Study Section (TCB)
Program Officer
Watson, Joanna M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Mayo Clinic Jacksonville
United States
Zip Code
Justilien, Verline; Walsh, Michael P; Ali, Syed A et al. (2014) The PRKCI and SOX2 oncogenes are coamplified and cooperate to activate Hedgehog signaling in lung squamous cell carcinoma. Cancer Cell 25:139-51
Parker, Peter J; Justilien, Verline; Riou, Philippe et al. (2014) Atypical protein kinase Cýý as a human oncogene and therapeutic target. Biochem Pharmacol 88:1-11
Hill, K S; Erdogan, E; Khoor, A et al. (2014) Protein kinase C* suppresses Kras-mediated lung tumor formation through activation of a p38 MAPK-TGF* signaling axis. Oncogene 33:2134-44
Kikuchi, K; Soundararajan, A; Zarzabal, L A et al. (2013) Protein kinase C iota as a therapeutic target in alveolar rhabdomyosarcoma. Oncogene 32:286-95
Greer, Yoshimi Endo; Fields, Alan P; Brown, Anthony M C et al. (2013) Atypical protein kinase C? is required for Wnt3a-dependent neurite outgrowth and binds to phosphorylated dishevelled 2. J Biol Chem 288:9438-46
Butler, Amanda M; Scotti Buzhardt, Michele L; Li, Shuhua et al. (2013) Protein kinase C zeta regulates human pancreatic cancer cell transformed growth and invasion through a STAT3-dependent mechanism. PLoS One 8:e72061
Mansfield, Aaron S; Fields, Alan P; Jatoi, Aminah et al. (2013) Phase I dose escalation study of the PKCýý inhibitor aurothiomalate for advanced non-small-cell lung cancer, ovarian cancer, and pancreatic cancer. Anticancer Drugs 24:1079-83
Wang, Yin; Hill, Kristen S; Fields, Alan P (2013) PKC? maintains a tumor-initiating cell phenotype that is required for ovarian tumorigenesis. Mol Cancer Res 11:1624-35
Justilien, Verline; Regala, Roderick P; Tseng, I-Chu et al. (2012) Matrix metalloproteinase-10 is required for lung cancer stem cell maintenance, tumor initiation and metastatic potential. PLoS One 7:e35040
Sajan, Mini P; Nimal, Sonali; Mastorides, Stephen et al. (2012) Correction of metabolic abnormalities in a rodent model of obesity, metabolic syndrome, and type 2 diabetes mellitus by inhibitors of hepatic protein kinase C-?. Metabolism 61:459-69

Showing the most recent 10 out of 41 publications