Appropriate implementation of Okazaki fragment maturation during DNA replication in eukaryotic cells is a fundamental mechanism for avoidance of mutations and genome stability. During lagging strand DNA synthesis, multiple RNA primers and immediately adjoined DNA-fragments are synthesized by primase (a hetero tetramer of a RNA polymerase and DNA Pol ). However, both of the enzymes lack a proof reading function, different from the other DNA polymerases. Therefore, this initial RNA-DNA fragment (alpha- segment of the Okazaki fragment) is highly mutagenic and has to be processed by nuclease complexes. This proposal aims to define detailed molecular mechanism for the nuclease-driven RNA primer processing in eukaryotic nuclei and mitochondria. For the last funding period, we have defined the roles of several nucleases in the processes, including S. cerevisiae RNase H(35), ScRad27 or human FEN1, and exonuclease-1, and mutagenic consequences when these nucleases are defective. We have also accumulated solid evidence to demonstrate that nuclease helicase DNA2 exclusively localizes into mitochondria, and plays a vital role in RNA primer removal during mitochondrial DNA replication. These novel exciting observations prompted us to develop new and additional specific aims in this renewal application. The current proposal focuses to test a central hypothesis that 1-segment processing is a vital part of cellular mechanisms to maintain genomic integrity and prevent mutagenic stresses due to intrinsic DNA sequence obstacles and exogenous insults. Deficiency of this integrative machinery could lead to a high incidence of mutagenesis and carcinogenesis. We will further define detailed molecular mechanisms for the nuclease-driven "1-segment" processing in Okazaki fragment maturation in yeast and mammalian cell systems, during replication of normal DNA sequence and repetitive DNA sequence regions, in the nucleus as well as the mitochondrion. Through a series of vigorous systematic analyses, we intend to obtain a high resolution image of how these nuclease complexes collectively work towards RNA primer processing in different scenarios and to relate in vitro and in vivo data using yeast and mammalian systems, including human cell lines and transgenic mice. Information made available from this systematic study will establish a relationship between this mechanism, unique mutagenic phenotype(s), and development of cancers.

Public Health Relevance

The current application aims to test whether 1-segment processing is a vital part of the cellular mechanism for maintaining genomic integrity and for preventing mutagenic stresses and cancers. The proposed studies should lead to advances in our understanding of early events and molecular mechanism of many cancer predispositions. The information made available via these studies will be useful in developing new strategies for cancer prevention and treatment.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA085344-14
Application #
8387769
Study Section
Cancer Etiology Study Section (CE)
Program Officer
Okano, Paul
Project Start
1999-07-01
Project End
2013-12-02
Budget Start
2012-12-01
Budget End
2013-12-02
Support Year
14
Fiscal Year
2013
Total Cost
$243,165
Indirect Cost
$96,680
Name
City of Hope/Beckman Research Institute
Department
Type
DUNS #
027176833
City
Duarte
State
CA
Country
United States
Zip Code
91010
Liu, Wenpeng; Zhou, Mian; Li, Zhengke et al. (2016) A Selective Small Molecule DNA2 Inhibitor for Sensitization of Human Cancer Cells to Chemotherapy. EBioMedicine 6:73-86
Ray Chaudhuri, Arnab; Callen, Elsa; Ding, Xia et al. (2016) Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535:382-7
Zhou, Ting; Pan, Feiyan; Cao, Yan et al. (2016) R152C DNA Pol β mutation impairs base excision repair and induces cellular transformation. Oncotarget 7:6902-15
Sun, H; He, L; Wu, H et al. (2016) The FEN1 L209P mutation interferes with long-patch base excision repair and induces cellular transformation. Oncogene :
Ronchi, Dario; Di Fonzo, Alessio; Lin, Weiqiang et al. (2013) Mutations in DNA2 link progressive myopathy to mitochondrial DNA instability. Am J Hum Genet 92:293-300
Lin, Weiqiang; Sampathi, Shilpa; Dai, Huifang et al. (2013) Mammalian DNA2 helicase/nuclease cleaves G-quadruplex DNA and is required for telomere integrity. EMBO J 32:1425-39
Lin, Yuanji; Yang, Ying; Li, Weihua et al. (2012) Reciprocal regulation of Akt and Oct4 promotes the self-renewal and survival of embryonal carcinoma cells. Mol Cell 48:627-40
Zheng, Li; Dai, Huifang; Zhou, Mian et al. (2012) Polyploid cells rewire DNA damage response networks to overcome replication stress-induced barriers for tumour progression. Nat Commun 3:815
Yang, Hui; Liu, Changwei; Jamsen, Joonas et al. (2012) The DNase domain-containing protein TATDN1 plays an important role in chromosomal segregation and cell cycle progression during zebrafish eye development. Cell Cycle 11:4626-32
Guo, Zhigang; Kanjanapangka, Julie; Liu, Na et al. (2012) Sequential posttranslational modifications program FEN1 degradation during cell-cycle progression. Mol Cell 47:444-56

Showing the most recent 10 out of 35 publications