As a master regulator of cellular stress response, p53 plays an important role in cell fate decisions. The activity of p53 therefore must be precisely regulated. Among numerous proteins involved in p53 control, MDM2 and MDMX are the key players, as evidenced by the fact that knockout of either mdm2 or mdmx in mice resulted in p53-dependent lethality. However, little is known about why both MDM2 and MDMX are required in p53 control, and the molecular mechanisms underlying MDM2 and MDMX-mediated p53 regulation remain not fully defined. Others and we have shown that MDM2 and MDMX form a heterocomplex and, more importantly, that they depend on each other in p53 regulation. Structural and biochemical evidence further indicate that formation of the MDM2/MDMX heterocomplex is favored. Our hypothesis is that the heterocomplex represents the physiological form of MDM2 and MDMX in p53 control. The proposed studies will use mouse models to directly test this hypothesis. We will also fully characterize the MDM2/MDMX heterocomplex in p53 ubiquitination and in regulation of the p53 response to stress.
The specific aims are: 1) using animal models to examine a role of the MDM2/MDMX complex in p53 regulation;2) characterize the MDM2/MDMX complex-mediated p53 ubiquitination;3) investigate cellular mechanisms that regulate the MDM2/MDMX complex. With the knock-in mice being successfully generated, we are very favorably positioned to carry out the proposed studies. The findings obtained from the proposed work are expected not only to shed light on the non-redundant function of MDM2 and MDMX, but also to provide a novel mechanism of p53 regulation.

Public Health Relevance

This application aims to directly test the importance of the MDM2/MDMX heterocomplex in p53 control by using animal models. In parallel, the MDM2/MDMX complex-mediated p53 ubiquitination will be fully characterized and cellular mechanisms of MDM2/MDMX regulation will be investigated. Through these lines of investigation, we will test the hypothesis that the MDM2/MDMX heterocomplex is the physiological E3 ligase for p53, which, if proven, will not only represent a new paradigm of p53 regulation but also shed lights on the non-redundant function of MDM2 and MDMX. In addition, the pivotal role of the MDM2/MDMX complex in p53 control presents an ideal target for p53 activation, e.g. disassociation of the heterocomplex, which may have therapeutic implications.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
2R01CA085679-10A1
Application #
8108134
Study Section
Molecular Oncogenesis Study Section (MONC)
Program Officer
Watson, Joanna M
Project Start
2000-04-01
Project End
2012-06-30
Budget Start
2011-09-01
Budget End
2012-06-30
Support Year
10
Fiscal Year
2011
Total Cost
$245,491
Indirect Cost
Name
University of Texas Health Science Center San Antonio
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
800772162
City
San Antonio
State
TX
Country
United States
Zip Code
78229
Liu, X-S; Liu, Z; Gerarduzzi, C et al. (2016) Somatic human ZBTB7A zinc finger mutations promote cancer progression. Oncogene 35:3071-8
de Polo, Anna; Luo, Zhongling; Gerarduzzi, Casimiro et al. (2016) AXL receptor signalling suppresses p53 in melanoma through stabilization of the MDMX-MDM2 complex. J Mol Cell Biol :
Yang, M; Lewinska, M; Fan, X et al. (2016) PRR14 is a novel activator of the PI3K pathway promoting lung carcinogenesis. Oncogene 35:5527-5538
Qi, Min; Ganapathy, Suthakar; Zeng, Weiqi et al. (2015) UXT, a novel MDMX-binding protein, promotes glycolysis by mitigating p53-mediated restriction of NF-?B activity. Oncotarget 6:17584-93
Liu, Xue-Song; Little, John B; Yuan, Zhi-Min (2015) Glycolytic metabolism influences global chromatin structure. Oncotarget 6:4214-25
Liu, Xue-Song; Genet, Matthew D; Haines, Jenna E et al. (2015) ZBTB7A Suppresses Melanoma Metastasis by Transcriptionally Repressing MCAM. Mol Cancer Res 13:1206-17
Yang, M; Yuan, Z-M (2015) A novel role of PRR14 in the regulation of skeletal myogenesis. Cell Death Dis 6:e1734
Lall, R; Ganapathy, S; Yang, M et al. (2014) Low-dose radiation exposure induces a HIF-1-mediated adaptive and protective metabolic response. Cell Death Differ 21:836-44
Ganapathy, Suthakar; Xiao, Shaowen; Yang, Mei et al. (2014) A low-dose arsenic-induced p53 protein-mediated metabolic mechanism of radiotherapy protection. J Biol Chem 289:5340-7
Liu, Xue-Song; Haines, Jenna E; Mehanna, Elie K et al. (2014) ZBTB7A acts as a tumor suppressor through the transcriptional repression of glycolysis. Genes Dev 28:1917-28

Showing the most recent 10 out of 28 publications