Cancer arises during the process of carcinogenesis, in which the exposure of cells to genotoxic insults leads to the introduction of permanent genetic changes. The ability of cells to detect this DNA damage and to activate appropriate repair mechanisms is crucial for the cell to suppress carcinogenic events. The Tip60 histone acetyltransferase is a key mediator of the cells ability to detect and repair these DNA lesions. Tip60 is a key component of the NuA4-Tip60 chromatin remodeling complex. Chromatin remodeling is utilized to unpack higher ordered chromatin structures and alter histone-DNA interactions to facilitate access of the DNA repair machinery to DNA lesions. Our results demonstrate that chromatin remodeling by the NuA4-Tip60 complex requires Tip60's HAT activity. Further, Tip60 contains a chromodomain, a conserved domain with the potential to interact with methylated lysine residues on histones, and this domain is required for the activation of Tip60's HAT activity and NuA4-dependent chromatin remodeling. The long term aims are to test the hypothesis that Tip60 is a key component of a novel signal transduction pathway which links the detection of DNA damage to alterations in chromatin structure. We will test the hypothesis that the catalytic components of NuA4, including the p400 ATPase activity and Tip60's HAT activity, are required for chromatin remodeling following DNA damage. Further, we propose that interactions between the chromodomain of Tip60 and exposed methyl-lysine residues on histones at sites of DNA damage mediate this activation of Tip60's HAT activity. Tip60 exists as a trimeric complex containing the Tip60, epc1 and ING3 proteins.
In specific aim 1, the role of the ING3 regulatory protein in controlling Tip60's HAT activity will be defined, and the mechanism by which NuA4 is recruited to DNA breaks will be determined.
In specific aim 2, the function of the ATPase activity of the p400 sub- unit of NuA4 in chromatin unwinding will be determined, and the contribution of histone acetylation by Tip60 at sites of DNA damage identified.
In specific aim 3, the specificity of interaction between the chromodomain of Tip60 and methylated lysine residues on histones will be determined, and the role of histone methylation in the DNA-damage dependent activation of Tip60 examined. An understanding of the signal transduction pathway by which Tip60 detects DNA strand breaks caused by bleomycin and related agents will provide crucial insights into the cytotoxicity and mutagenic properties of these agents. A more complete understanding of how Tip60 regulates the DNA damage response may allow new therapies, including the rational design of novel therapeutic compounds, to be applied to cancer therapy and to clinically beneficial interventions for reducing the risk from genotoxic stress. Finally, Tip60 and its associated proteins are potential targets for developing therapeutic agents which can modify the DNA damage response of tumor cells.

Public Health Relevance

Exposure to carcinogens, including environmental agents such as UV light, tobacco smoke, heavy metals and other genotoxic agents, are the underlying cause of many cancers. An understanding of how Tip60 regulates the repair of this DNA damage is therefore relevant to improving public health, and will allow for the rational design of novel therapeutic compounds which could be applied to cancer therapy, and for clinically beneficial interventions to the cancer risk associated with exposure to carcinogens. In addition, Tip60 is a potential target for developing therapeutic agents which can modify the DNA damage response of tumor cells and sensitize them to anti-cancer therapies.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA093602-09
Application #
8268531
Study Section
Cancer Etiology Study Section (CE)
Program Officer
Arya, Suresh
Project Start
2001-12-01
Project End
2014-04-30
Budget Start
2012-05-01
Budget End
2014-04-30
Support Year
9
Fiscal Year
2012
Total Cost
$286,462
Indirect Cost
$122,770
Name
Dana-Farber Cancer Institute
Department
Type
DUNS #
076580745
City
Boston
State
MA
Country
United States
Zip Code
02215
Gursoy-Yuzugullu, Ozge; House, Nealia; Price, Brendan D (2016) Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks. J Mol Biol 428:1846-60
Gursoy-Yuzugullu, Ozge; Ayrapetov, Marina K; Price, Brendan D (2015) Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair. Proc Natl Acad Sci U S A 112:7507-12
Ayrapetov, Marina K; Gursoy-Yuzugullu, Ozge; Xu, Chang et al. (2014) DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. Proc Natl Acad Sci U S A 111:9169-74
Price, Brendan D; D'Andrea, Alan D (2013) Chromatin remodeling at DNA double-strand breaks. Cell 152:1344-54
Berbeco, Ross I; Korideck, Houari; Ngwa, Wilfred et al. (2012) DNA damage enhancement from gold nanoparticles for clinical MV photon beams. Radiat Res 178:604-8
Xu, Chang; Xu, Ye; Gursoy-Yuzugullu, Ozge et al. (2012) The histone variant macroH2A1.1 is recruited to DSBs through a mechanism involving PARP1. FEBS Lett 586:3920-5
Xu, Ye; Ayrapetov, Marina K; Xu, Chang et al. (2012) Histone H2A.Z controls a critical chromatin remodeling step required for DNA double-strand break repair. Mol Cell 48:723-33
Xu, Ye; Xu, Chang; Price, Brendan D (2012) Mechanistic links between ATM and histone methylation codes during DNA repair. Prog Mol Biol Transl Sci 110:263-88
Xu, Ye; Price, Brendan D (2011) Chromatin dynamics and the repair of DNA double strand breaks. Cell Cycle 10:261-7
Xu, Ye; Parmar, Kalindi; Du, Fengxia et al. (2011) The radioprotective agent WR1065 protects cells from radiation damage by regulating the activity of the Tip60 acetyltransferase. Int J Biochem Mol Biol 2:295-302

Showing the most recent 10 out of 21 publications