Epstein Barr Virus (EBV) latent infection has been etiologically linked to human malignancies of lymphoid and epithelial cell lineage. In latently infected cells EBV DNA persists as a multicopy episome that maintains a stable copy number during cellular proliferation. The latent virus expresses a limited set of viral genes that contribute to host-cell growth transformation and viral genome survival. EBNA1 is a latency-associated gene product that is consistently expressed in all EBV-associated tumor cells and is essential for latent genome maintenance. EBNA1 stimulates DNA replication and plasmid maintenance when bound to the viral origin of plasmid replication OriP. The mechanism of EBNA1-dependent replication and plasmid maintenance is not completely understood. In this application, we focus on the functions of EBNA1 in viral DNA replication and plasmid maintenance. In previous studies, we found that EBNA1 binds cooperatively with telomere repeat factor 2 (TRF2) at the dyad symmetry (DS) element of OriP, and that TRF2 contributes to both DNA replication and plasmid maintenance function. New data suggest that TRF2 may contribute to the recruitment of the Origin Recognition Complex (ORC) and the intra-S phase checkpoint proteins important for OriP replication and maintenance. In this revised competitive renewal, we focus on the role of EBNA1 at OriP, and in particular the function of the RGG motifs in EBNA1 that have been genetically implicated in both replication and maintenance function (aim 1). We found that EBNA1 RGG motifs recruit ORC in an RNA-dependent manner. We also found that TRF2 recruits S phase checkpoint proteins to OriP, and explore their contribution to episome replication and maintenance. In particular, we explore the hypothesis that recombination junctions form at OriP, and that these junctions are important for sister-chromatid cohesion and plasmid segregation (aim 2). Finally, we investigate the mechanism of hydroxyurea-induced loss of EBV episomes, and how this may reveal critical mechanisms regulating OriP replication and maintenance (aim 3).
These aims are integrated by a central hypothesis that episome maintenance and plasmid segregation are mechanistically coupled to DNA replication and the nucleoprotein structures that form as a byproduct of DNA replication through OriP.
These aims are further integrated by the long-term goal of identifying critical viral and cellular targets for inhibiting DNA replication and genome maintenance of Epstein-Barr virus latent infections.

Public Health Relevance

EBV latent infection has been implicated in multiple human cancers. At present, there is no effective treatment for the latent viral infection. Disruption of episomal maintenance or viral latent cycle replication is likely to prevent EBV-associated disease. We have focused on novel aspects of episomal maintenance that have emerged from our published work and preliminary studies. Here we test the hypothesis that EBV episome maintenance depends on the telomere repeat factors and the recruitment of S phase checkpoint proteins to OriP. The S phase checkpoint proteins provide a previously unappreciated mechanisms for regulation of EBV episomal maintenance during latency. We provide data that they are the target of hydroxyurea treatment, which is the only documented treatment for eliminating latent viral episomes. We propose that the further characterization of this mechanism will provide new targets for pharmacological intervention in EBV-associated disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA093606-08
Application #
7802307
Study Section
Virology - B Study Section (VIRB)
Program Officer
Daschner, Phillip J
Project Start
2001-12-01
Project End
2013-04-30
Budget Start
2010-05-01
Budget End
2011-04-30
Support Year
8
Fiscal Year
2010
Total Cost
$303,280
Indirect Cost
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
AlQarni, Sana; Al-Sheikh, Yazeed; Campbell, Donald et al. (2018) Lymphomas driven by Epstein-Barr virus nuclear antigen-1 (EBNA1) are dependant upon Mdm2. Oncogene 37:3998-4012
Lu, Fang; Wiedmer, Andreas; Martin, Kayla A et al. (2017) Coordinate Regulation of TET2 and EBNA2 Control DNA Methylation State of Latent Epstein-Barr Virus. J Virol :
Deakyne, Julianna S; Malecka, Kimberly A; Messick, Troy E et al. (2017) Structural and Functional Basis for an EBNA1 Hexameric Ring in Epstein-Barr Virus Episome Maintenance. J Virol 91:
Dheekollu, Jayaraju; Malecka, Kimberly; Wiedmer, Andreas et al. (2017) Carcinoma-risk variant of EBNA1 deregulates Epstein-Barr Virus episomal latency. Oncotarget 8:7248-7264
Dheekollu, Jayaraju; Wiedmer, Andreas; Sentana-Lledo, Daniel et al. (2016) HCF1 and OCT2 Cooperate with EBNA1 To Enhance OriP-Dependent Transcription and Episome Maintenance of Latent Epstein-Barr Virus. J Virol 90:5353-5367
Tempera, Italo; De Leo, Alessandra; Kossenkov, Andrew V et al. (2016) Identification of MEF2B, EBF1, and IL6R as Direct Gene Targets of Epstein-Barr Virus (EBV) Nuclear Antigen 1 Critical for EBV-Infected B-Lymphocyte Survival. J Virol 90:345-55
Shorter, Stephanie L; Albaghdadi, Ahmad J H; Kan, Frederick W K (2016) Alterations in oviductal cilia morphology and reduced expression of axonemal dynein in diabetic NOD mice. Tissue Cell 48:588-595
Huang, Hongda; Deng, Zhong; Vladimirova, Olga et al. (2016) Structural basis underlying viral hijacking of a histone chaperone complex. Nat Commun 7:12707
Lieberman, Paul M (2016) Epigenetics and Genetics of Viral Latency. Cell Host Microbe 19:619-28
Lu, Fang; Chen, Horng-Shen; Kossenkov, Andrew V et al. (2016) EBNA2 Drives Formation of New Chromosome Binding Sites and Target Genes for B-Cell Master Regulatory Transcription Factors RBP-j? and EBF1. PLoS Pathog 12:e1005339

Showing the most recent 10 out of 48 publications