Activation of the Keap1-Nrf2 signaling pathway is an adaptive response to environmental and endogenous stresses and serves to render animals resistant to chemical carcinogenesis and other forms of toxicity, whereas disruption of the pathway exacerbates these outcomes. This pathway, which can be activated by sulfhydryl reactive, small-molecule pharmacologic and food-based agents used in chemoprevention, regulates the inducible expression of an extended battery of cytoprotective genes, often by direct binding of the transcription factor Nrf2 to antioxidant response elements in the promoter regions of target genes. However, our recent work indicates that some of the protective effects may be mediated indirectly through cross-talk with additional pathways affecting cell survival and other aspects of cell fate. These interactions provide a multi-tiered, integrated response to chemical stresses through: (i) prevention of macromolecular damage through induction of antioxidative, anti-inflammatory and carcinogen detoxication genes;(ii) induction of macromolecular damage recognition, repair/removal systems;and (iii) activation of tissue repair/regeneration pathways. In this project we seek to use molecular, genetic and chemical approaches to test the hypothesis that chemoprotection mediated by Nrf2 reflects both activation of its direct target genes but importantly cross- talk with other adaptive response signaling networks affecting cell fate, such as Notch1. The overall goals of the proposed studies are two-fold: to assess the underlying mechanisms and consequences of pathway cross-talk and to assess the functional significance and possible untoward effects of chronic induction of the Nrf2 response in order to facilitate the identification and utilization of safe, efficacious chemopreventive agents.

Public Health Relevance

This research will examine the role of the transcription factor Nrf2 as a target for cancer chemoprevention by evaluating the contributions of cross-talk between this cytoprotective pathway and other signaling pathways influencing cell fate. Emphasis is placed on understanding the risks and benefits associated with long-term activation of Nrf2 signaling. Collectively, these studies will facilitate the identification and utilization of safe, efficacious chemopreventive agents.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Chemo/Dietary Prevention Study Section (CDP)
Program Officer
Malone, Winfred F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Skoko, John J; Wakabayashi, Nobunao; Noda, Kentaro et al. (2014) Loss of Nrf2 in mice evokes a congenital intrahepatic shunt that alters hepatic oxygen and protein expression gradients and toxicity. Toxicol Sci 141:112-9
Wakabayashi, Nobunao; Skoko, John J; Chartoumpekis, Dionysios V et al. (2014) Notch-Nrf2 axis: regulation of Nrf2 gene expression and cytoprotection by notch signaling. Mol Cell Biol 34:653-63
Chartoumpekis, Dionysios V; Kensler, Thomas W (2013) New player on an old field; the keap1/Nrf2 pathway as a target for treatment of type 2 diabetes and metabolic syndrome. Curr Diabetes Rev 9:137-45
Kaidery, Navneet Ammal; Banerjee, Rebecca; Yang, Lichuan et al. (2013) Targeting Nrf2-mediated gene transcription by extremely potent synthetic triterpenoids attenuate dopaminergic neurotoxicity in the MPTP mouse model of Parkinson's disease. Antioxid Redox Signal 18:139-57
Kensler, Thomas W; Egner, Patricia A; Agyeman, Abena S et al. (2013) Keap1-nrf2 signaling: a target for cancer prevention by sulforaphane. Top Curr Chem 329:163-77
Agyeman, Abena S; Chaerkady, Raghothama; Shaw, Patrick G et al. (2012) Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast Cancer Res Treat 132:175-87
Healy, Zachary R; Liu, Hua; Holtzclaw, W David et al. (2011) Inactivation of tautomerase activity of macrophage migration inhibitory factor by sulforaphane: a potential biomarker for anti-inflammatory intervention. Cancer Epidemiol Biomarkers Prev 20:1516-23
Slocum, Stephen L; Kensler, Thomas W (2011) Nrf2: control of sensitivity to carcinogens. Arch Toxicol 85:273-84
Suganuma, Hiroyuki; Fahey, Jed W; Bryan, Kelley E et al. (2011) Stimulation of phagocytosis by sulforaphane. Biochem Biophys Res Commun 405:146-51
You, Aram; Nam, Chang-Won; Wakabayashi, Nobunao et al. (2011) Transcription factor Nrf2 maintains the basal expression of Mdm2: An implication of the regulation of p53 signaling by Nrf2. Arch Biochem Biophys 507:356-64

Showing the most recent 10 out of 73 publications