Hypoxia and nutrient deprivation conditions are dynamic features of the tumor microenvironment that contribute to cancer progression and resistance to treatment. We have previously shown that hypoxic stress activates the endoplasmic reticulum (ER) kinase PERK thereby inducing phosphorylation of the translation initiation factor eIF2? on ser51. Later, we also demonstrated that the nutrient-sensing kinase GCN2, similarly activates eIF2 phosphorylation in solid tumors in response to both amino acid and glucose deprivation. Phosphorylation of eIF2? not only reduces energy expensive processes such as global translation, but also creates an environment that promotes the more efficient translation of stress-responsive genes, such as ATF4, a transcription factor that upregulates genes involved in adaptation to ER stress. The phosphorylation of eIF2? and the upregulation of ATF4 represent a common mechanism activated by different cellular stresses, thereby being termed the Integrated Stress Response (ISR). Disruption of the ISR in tumor cells dramatically affects their proliferation and survival under stress and their ability to grow tumors in vivo. Together, our data support a model in which transformed cells activate the ISR in vivo as an adaptive response to oxygen and nutrient deprivation stress and that disruption of this pathway at several steps compromises cellular survival under stress and tumor growth. The overall hypothesis of this proposal is that the ISR transducers PERK and GCN2 which are activated under conditions of tumor microenvironmental stress, activate pathways that lead to increased cell survival and angiogenesis and contribute to metastasis. To test this hypothesis, we propose the following three specific aims:
In Aim 1, we will determine the role of the cyclin-dependent kinase inhibitor p21 in mediating cell-cycle arrest and survival in response to hypoxia and nutrient deprivation in ISR-proficient and deficient cells.
In Aim 2, we will investigate the role of GCN2 and PERK in angiogenesis using in vitro angiogenesis models. We will also identify mediators of angiogenesis downstream of GCN2 and PERK using antibody arrays and sucrose sedimentation analysis of actively translated mRNAs.
In Aim 3, we will use transgenic mouse models of fibrosarcoma which will be crossed to GCN2+/+ and GCN2-/- mice. Angiogenesis and metastasis will be investigated in these models. Completion of these aims will establish whether the ISR is a critical targets of tumorigenesis and metastasis and define the mechanism of such an activity. Inhibitors of PERK and GCN2 are being actively pursued by the PI's lab and by pharmaceutical companies. Therefore, such data could facilitate rapid movement of lead compounds into preclinical animal testing phase.

Public Health Relevance

The tumor microenvironment plays important roles in making tumors more aggressive and more resistant to therapy. This proposal continues work performed over the last 10 years to understand the molecular mechanisms by which these stresses (such as low oxygen and low glucose) increase the ability of tumors to make new blood vessels, grow and spread to other sites. Successful completion of the aims in this proposal may lead to new targets for therapeutic intervention against aggressive cancers such as fibrosarcomas.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA094214-13
Application #
8906476
Study Section
Tumor Microenvironment Study Section (TME)
Program Officer
Ault, Grace S
Project Start
2001-12-01
Project End
2016-05-31
Budget Start
2015-06-01
Budget End
2016-05-31
Support Year
13
Fiscal Year
2015
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Nguyen, Hao G; Conn, Crystal S; Kye, Yae et al. (2018) Development of a stress response therapy targeting aggressive prostate cancer. Sci Transl Med 10:
Lehman, Stacey L; Cerniglia, George J; Johannes, Gregg J et al. (2015) Translational Upregulation of an Individual p21Cip1 Transcript Variant by GCN2 Regulates Cell Proliferation and Survival under Nutrient Stress. PLoS Genet 11:e1005212
Cerniglia, George J; Dey, Souvik; Gallagher-Colombo, Shannon M et al. (2015) The PI3K/Akt Pathway Regulates Oxygen Metabolism via Pyruvate Dehydrogenase (PDH)-E1? Phosphorylation. Mol Cancer Ther 14:1928-38
Lehman, Stacey L; Ryeom, Sandra; Koumenis, Constantinos (2015) Signaling through alternative Integrated Stress Response pathways compensates for GCN2 loss in a mouse model of soft tissue sarcoma. Sci Rep 5:11781
Dey, Souvik; Sayers, Carly M; Verginadis, Ioannis I et al. (2015) ATF4-dependent induction of heme oxygenase 1 prevents anoikis and promotes metastasis. J Clin Invest 125:2592-608
Dey, Souvik; Tameire, Feven; Koumenis, Constantinos (2013) PERK-ing up autophagy during MYC-induced tumorigenesis. Autophagy 9:612-4
Bhattacharya, S; HuangFu, W-C; Dong, G et al. (2013) Anti-tumorigenic effects of Type 1 interferon are subdued by integrated stress responses. Oncogene 32:4214-21
Tang, Xiaohu; Lucas, Joseph E; Chen, Julia Ling-Yu et al. (2012) Functional interaction between responses to lactic acidosis and hypoxia regulates genomic transcriptional outputs. Cancer Res 72:491-502
Hart, Lori S; Cunningham, John T; Datta, Tatini et al. (2012) ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest 122:4621-34
Marotta, Diane; Karar, Jayashree; Jenkins, W Timothy et al. (2011) In vivo profiling of hypoxic gene expression in gliomas using the hypoxia marker EF5 and laser-capture microdissection. Cancer Res 71:779-89

Showing the most recent 10 out of 26 publications