Metabolic Engineering of Cancer for Selective Immunotargeting Cancer is one of the most common and fatal diseases and, in general, it is difficult to cure. Among the different strategies probed for cancer therapy, treating cancer patients with cancer vaccines or cancer-targeting antibodies is especially attractive as the human immune system can be extremely effective and selective to eliminate tumors in the human body. In the development of cancer vaccines used for patient immunization or antibody preparation, the abnormal glycans expressed by cancer cells, called tumor-associated carbohydrate antigens (TACAs), are valuable molecular targets, as they are abundant, exposed, and conserved on the cancer cell surface. However, the problem is that TACAs are usually poorly immunogenic or tolerated by the patients'immune system, which has severely hindered the delivery of functional TACA-based cancer vaccines or immunotherapies. To address the problem and develop effective cancer cures, a new immunotherapeutic strategy was proposed. First, animals (or patients) are immunized with a vaccine made of an unnatural TACA derivative to elicit a specific immune response. Next, the animals are treated with a similarly modified monosaccharide to bioengineer tumor cell expression of the unnatural TACA derivative (cancer cell glycoengineering). Then, the trained immune system will specifically recognize and kill the glycoengineered tumors. The new immunotherapy can also be realized with a TACA derivative-specific antibody, instead of a vaccine, for the treatment. For the strategy to work, it has to mee two conditions, namely, a potent vaccine that can be used for patient immunization or antibody preparation and an effective method for cancer cell glycoengineering. It has been proved that the latter can exploit the flexible biosynthetic pathways for glycans. To create potent and reliabl TACA-based vaccines, a new vaccine strategy is proposed here, namely, to have TACAs linked to a bacterial monophosphoryl lipid A (MPLA). The hypothesis is that MPLA can act as a powerful vaccine carrier and built-in adjuvant to formulate fully synthetic, self-adjuvanting, structurally defined, readily reproducible, and robust glycoconjugate vaccines. This proposal aims to: (1) study the structure-activity relationship of MPLAs and identify new, potent vaccine carriers and adjuvants, (2) prepare and study the immunological properties of TACA-MPLA conjugates and identify the proper vaccines for cancer immunotherapy, and (3) use the new TACA-MPLA conjugates as vaccines for active and passive immunotherapy of cancer such as melanoma and breast or colon cancer by the above therapeutic strategy. One innovation of this project is the use of MPLA as a carrier and adjuvant for fully synthetic self-adjuvanting carbohydrate vaccine development and related studies. Another innovation is the combination MPLA conjugate vaccine with cell glycoengineering for cancer therapy. This combination will solve the immunotolerance problem of TACAs, a central issue in cancer immunology, and help develop functional cures for various tumors. The new vaccine strategy will be applicable to other vaccine design as well. Thus, both strategies should be widely useful, and this research program should be of general significance and have a broad impact on cancer research.

Public Health Relevance

Cancer immunotherapy or therapeutic cancer vaccine is highly regarded for cancer treatment. To develop efficient cancer immunotherapies, a new strategy that combines vaccination using a synthetic glycoconjugate vaccine and metabolic engineering of specific carbohydrate antigens on the cancer cell surface was explored. This research program aims to discover novel vaccine carriers and adjuvants to formulate potent, structurally defined, and self-adjuvanting cancer vaccines and apply the vaccines to the treatment of melanoma and breast, prostate and colon cancers by the new immunotherapeutic strategy.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
2R01CA095142-12A1
Application #
8760867
Study Section
Synthetic and Biological Chemistry A Study Section (SBCA)
Program Officer
Muszynski, Karen
Project Start
2002-04-01
Project End
2019-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
12
Fiscal Year
2014
Total Cost
$232,622
Indirect Cost
$75,122
Name
Wayne State University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
001962224
City
Detroit
State
MI
Country
United States
Zip Code
48202
Liao, Guochao; Zhou, Zhifang; Suryawanshi, Sharad et al. (2016) Fully Synthetic Self-Adjuvanting α-2,9-Oligosialic Acid Based Conjugate Vaccines against Group C Meningitis. ACS Cent Sci 2:210-8
Mandal, Satadru S; Liao, Guochao; Guo, Zhongwu (2015) Chemical Synthesis of the Tumor-Associated Globo H Antigen. RSC Adv 5:23311-23319
Mondal, Prolay K; Liao, Guochao; Mondal, Mohabul A et al. (2015) Chemical synthesis of the repeating unit of type Ia group B Streptococcus capsular polysaccharide. Org Lett 17:1102-5
Liao, Guochao; Zhou, Zhifang; Guo, Zhongwu (2015) Synthesis and immunological study of α-2,9-oligosialic acid conjugates as anti-group C meningitis vaccines. Chem Commun (Camb) 51:9647-50
Qiu, Lei; Li, Jie; Yu, Shichong et al. (2015) A novel cancer immunotherapy based on the combination of a synthetic carbohydrate-pulsed dendritic cell vaccine and glycoengineered cancer cells. Oncotarget 6:5195-203
Liao, Guochao; Burgula, Srinivas; Zhou, Zhifang et al. (2015) A Convergent Synthesis of 6-O-Branched β-Glucan Oligosaccharides. European J Org Chem 2015:2942-2951
Liao, Guochao; Zhou, Zhifang; Burgula, Srinivas et al. (2015) Synthesis and immunological studies of linear oligosaccharides of β-glucan as antigens for antifungal vaccine development. Bioconjug Chem 26:466-76
Zhou, Zhifang; Liao, Guochao; Mandal, Satadru S et al. (2015) A Fully Synthetic Self-Adjuvanting Globo H-Based Vaccine Elicited Strong T Cell-Mediated Antitumor Immunity. Chem Sci 6:7112-7121
Zhou, Zhifang; Liao, Guochao; Stepanovs, Sergejs et al. (2014) Quantifying the Efficiency of N-Phenyl-D-mannosamine to Metabolically Engineer Sialic Acid on Cancer Cell Surface. J Carbohydr Chem 33:395-407
Zhou, Zhifang; Mondal, Mohabul; Liao, Guochao et al. (2014) Synthesis and evaluation of monophosphoryl lipid A derivatives as fully synthetic self-adjuvanting glycoconjugate cancer vaccine carriers. Org Biomol Chem 12:3238-45

Showing the most recent 10 out of 34 publications