This is a competing continuation proposal for a multi-investigator project to study and contravene EGFR signaling in cancer. The investigators bring to bear expertise in protein engineering (Wittrup, MIT), mass spectrometric phosphoproteomics (White, MIT), computational systems biology (Lauffenburger, MIT), and structural biology (Kuriyan, UC Berkeley). The first ten years of this project has produced 52 publications that have been cited in total 2,088 times, with a mean of 40 and a median of 24 citations per paper, and an h index of 26. In this renewal we propose to extend a novel therapeutic modality developed in the previous grant period, and to deepen our understanding of EGFR signaling networks and receptor structure/function relationships. We have created a novel triepitopic antibody topology by appending two small Fn3-based EGFR binding domains to the cetuximab IgG. This single construct binds at three nonoverlapping epitopes on EGFR, driving rapid clustering and downregulation without detectable receptor phosphorylation or downstream signaling. The triepitopic antibody controls growth of xenografted tumors that are resistant to the parent cetuximab antibody, indicating a qualitative improvement in mechanism of action that overcomes resistance due to KRAS and BRAF mutations. We will extend the functionality of this triepitopic construct to inhibit HER3 in order to pre-emptively overcome a key resistance mechanism. We will also employ a novel EGFR-targeted siRNA delivery vector to identify genes whose silencing produce antitumor efficacy synergistic with EGFR antagonism. We will apply our sophisticated experimental and computational network analysis tools to understanding three forms of resistance to anti-EGFR therapeutics: a) mutations in effector kinases such as KRAS and BRAF;b) upregulation of MET and HER3;and c) altered proteolytic shedding of ErbB ligands and ectodomains. In each case, signaling network interconnectivity and dynamics will be studied in untreated, cetuximab treated, and triepitopic antibody treated cell lines to examine how therapeutic interventions interact with the dysregulated pathways present in cancer cells. We will extend our structural studies of EGFR receptor biology to deepen our understanding of the flow of information from EGFR ligand binding outside the cell to kinase activation in the cytoplasm. Membrane protein NMR is revealing key conformational states of the EGFR transmembrane domain. Crystallographic, mass spectrometric, and fluorescence microscopic assays will help identify the temporal order and topological control of autophosphorylation in the activated EGFR dimer. This unusually comprehensively integrated multidisciplinary project has excellent momentum, and the team is enthusiastically engaged in pressing forward in these exciting new directions.

Public Health Relevance

A team of four scientists and engineers at MIT and UC Berkeley are analyzing a particular tumor-promoting regulatory pathway in cancer cells, and designing potential new drugs to specifically and potently inhibit these inappropriate growth signals. A particular focus is to understand the mechanisms that tumors use to resist such treatments, so as to anticipate and overcome such resistance.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Drug Discovery and Molecular Pharmacology Study Section (DMP)
Program Officer
Welch, Anthony R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
Internal Medicine/Medicine
Schools of Arts and Sciences
United States
Zip Code
Reddy, Raven J; Gajadhar, Aaron S; Swenson, Eric J et al. (2016) Early signaling dynamics of the epidermal growth factor receptor. Proc Natl Acad Sci U S A 113:3114-9
Traxlmayr, Michael W; Kiefer, Jonathan D; Srinivas, Raja R et al. (2016) Strong Enrichment of Aromatic Residues in Binding Sites from a Charge-neutralized Hyperthermostable Sso7d Scaffold Library. J Biol Chem 291:22496-22508
Kravchenko-Balasha, Nataly; Johnson, Hannah; White, Forest M et al. (2016) A Thermodynamic-Based Interpretation of Protein Expression Heterogeneity in Different Glioblastoma Multiforme Tumors Identifies Tumor-Specific Unbalanced Processes. J Phys Chem B 120:5990-7
Miller, Miles A; Sullivan, Ryan J; Lauffenburger, Douglas A (2016) Molecular Pathways: Receptor Ectodomain Shedding in Treatment, Resistance, and Monitoring of Cancer. Clin Cancer Res :
Reddy, Raven J; Curran, Timothy G; Zhang, Yi et al. (2016) Measurement of Phosphorylated Peptides with Absolute Quantification. Methods Mol Biol 1410:281-92
Tape, Christopher J; Ling, Stephanie; Dimitriadi, Maria et al. (2016) Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation. Cell 165:910-20
de Picciotto, Seymour; Dickson, Paige M; Traxlmayr, Michael W et al. (2016) Design Principles for SuCESsFul Biosensors: Specific Fluorophore/Analyte Binding and Minimization of Fluorophore/Scaffold Interactions. J Mol Biol 428:4228-4241
Miller, Miles A; Oudin, Madeleine J; Sullivan, Ryan J et al. (2016) Reduced Proteolytic Shedding of Receptor Tyrosine Kinases Is a Post-Translational Mechanism of Kinase Inhibitor Resistance. Cancer Discov 6:382-99
Curran, Timothy G; Zhang, Yi; Ma, Daniel J et al. (2015) MARQUIS: a multiplex method for absolute quantification of peptides and posttranslational modifications. Nat Commun 6:5924
Kovacs, Erika; Zorn, Julie Anne; Huang, Yongjian et al. (2015) A structural perspective on the regulation of the epidermal growth factor receptor. Annu Rev Biochem 84:739-64

Showing the most recent 10 out of 96 publications