T cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy that accounts for 15% of pediatric and 25% of adult ALL cases. Although the overall survival rates for children with T-ALL have improved, 25% relapse and most succumb to disease. Currently, T-ALL is treated with multi-agent chemotherapy and no targeted therapies exist. T-ALL is largely caused by activation of the TAL1 and NOTCH1 oncogenic pathways. We have shown that Tal1 contributes to leukemia by interfering with E proteins, critical regulators of lymphoid development. We also identified mutations in Notch1 as an important cooperating event and showed that mouse T-ALL growth remains dependent on Notch1. Therefore, both TAL1 and NOTCH1 contribute to T-ALL growth and survival, but it remains unknown whether human T-ALL growth can be limited in vivo by inhibiting only NOTCH1 or whether the TAL1/E2A oncogenic pathway will also need to be targeted. The overall goals of this research program are to understand how the TAL1/E2A and NOTCH1 pathways give rise to T-ALL and to use this mechanistic knowledge to test new therapeutic approaches in our mouse and newly established human T-ALL models. We hypothesize that the high rates of therapeutic relapse observed in T-ALL patients reflects an inability to eliminate leukemia-initiating cells (L-ICs), a rare population of leukemic cells required to initiate and perpetuate disease. Using our mouse T-ALL models, we demonstrate that committed thymic progenitors are enriched in disease potential and that Notch1 inhibition reduces mouse L-IC activity. A goal of this proposal is to purify and characterize the mouse L-IC and to determine how Notch1 mediates L-IC self-renewal and whether Tal1 also contributes (Aim1). Our preliminary studies show that silencing the TAL1 oncogene sensitizes human T-ALL cells to the effects of NOTCH1 inhibition and induces apoptosis. A final objective of this proposal is to develop novel TAL1 inhibitors and to test whether TAL1 and NOTCH1 inhibition is sufficient to eliminate human L-ICs and prolong the survival of immunodeficient NOD-scid IL2R3null mice engrafted with primary pediatric T-ALL cells.

Public Health Relevance

The overall goal of this research program is to understand how the TAL1 and NOTCH1 oncogenes cooperate to cause T cell leukemia. The work proposed will use mouse and human models of the disease to determine whether targeting TAL1 and/or NOTCH1 reduces leukemia initiating cell (L-IC) growth and results in long term survival.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-OBT-S (02))
Program Officer
Mufson, R Allan
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Massachusetts Medical School Worcester
Schools of Medicine
United States
Zip Code
Delgado-Martin, C; Meyer, L K; Huang, B J et al. (2017) JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia 31:2568-2576
Choi, AHyun; Illendula, Anuradha; Pulikkan, John A et al. (2017) RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood 130:1722-1733
Anderson, N M; Li, D; Peng, H L et al. (2016) The TCA cycle transferase DLST is important for MYC-mediated leukemogenesis. Leukemia 30:1365-74
Carr, Michael I; Roderick, Justine E; Gannon, Hugh S et al. (2016) Mdm2 Phosphorylation Regulates Its Stability and Has Contrasting Effects on Oncogene and Radiation-Induced Tumorigenesis. Cell Rep 16:2618-2629
Carr, Michael I; Roderick, Justine E; Zhang, Hong et al. (2016) Phosphorylation of the Mdm2 oncoprotein by the c-Abl tyrosine kinase regulates p53 tumor suppression and the radiosensitivity of mice. Proc Natl Acad Sci U S A 113:15024-15029
Roderick, Justine E; Tesell, Jessica; Shultz, Leonard D et al. (2014) c-Myc inhibition prevents leukemia initiation in mice and impairs the growth of relapsed and induction failure pediatric T-ALL cells. Blood 123:1040-50
Knoechel, Birgit; Roderick, Justine E; Williamson, Kaylyn E et al. (2014) An epigenetic mechanism of resistance to targeted therapy in T cell acute lymphoblastic leukemia. Nat Genet 46:364-70
Gutierrez, Alejandro; Roderick, Justine E; Kelliher, Michelle A (2014) Leukemia propagating cells Akt up. Cancer Cell 25:263-5
Reynolds, C; Roderick, J E; LaBelle, J L et al. (2014) Repression of BIM mediates survival signaling by MYC and AKT in high-risk T-cell acute lymphoblastic leukemia. Leukemia 28:1819-27
Sanda, Takaomi; Tyner, Jeffrey W; Gutierrez, Alejandro et al. (2013) TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Cancer Discov 3:564-77

Showing the most recent 10 out of 21 publications