CAV-1, StatSa Signaling, and Estrogen-Dependent Breast Cancer The human Caveolin-1 (Cav-1) gene acts as a mammary gland tumor suppressor. We have previously identified Cav-1 inactivating (dominant-negative (DN)) mutations in up to 35 % of estrogen receptor (ER) positive breast cancer patients. Our hypothesis is that up-regulation of ER levels and activity are caused by Cav-1 inactivating mutations. As Cav-1 functions as an inhibitor of the Jak-2 kinase, we propose that StatSa activation is the mechanism by which loss of Cav-1 function results in increased ER-alpha levels. In support of this hypothesis, we present novel evidence that StatSa activation is sufficient to upregulate ER-alpha levels in ER-negative human breast cancer cells. As such, our preliminary studies have now defined a novel signaling pathway leading to breast cancer: Cav-1 gene inactivation (DN-mutations) -->StatSa activation --> ER-alpha upreoulation ->Cvclin D1 over-expression. The three Specific Aims of the project are: 1) Determine the role of StatSa activation and ER-alpha in Cav-1-related mammary hyperplasia. proliferation, and 3D lumen formation. We will analyze the mammary glands of Cav-1/StatSa double- knockout mice and study the ex vivo behavior of primary cultures of mammary epithelia from these mice. 2) Determine the role of StatSa activation and ER-alpha in Cav-1-related mammary tumorigenesis and metastasis. For this purpose, we will perform orthotopic transplantation of Met-1 cells expressing Cav-1 dominant-negative (DN) mutants (such as P132L) that are found in human breast cancer. The role of StatSa signaling will be assessed using DN mutants of StatSa and Jak-2. The role of estrogen will be assessed by ovariectomy and supplementation with estrogen pellets. Tamoxifen-resistance will also be investigated. 3) Determine if Cav-1 mutations co-segregate with StatSa activation in ER(+) human breast cancer samples. Here, we propose to examine the relevance of this newly defined signaling pathway in human breast cancer pathogenesis, using Cav-1 mutations, ER-alpha expression levels, and StatSa activation as novel prognostic markers. Since greater than 40% of ER-apha positive patients show tamoxifen-resistance, we will also examine if Cav-1 mutations and StatSa activation are critical predictors of tamoxifen-resistance.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Tumor Cell Biology Study Section (TCB)
Program Officer
Mohla, Suresh
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Thomas Jefferson University
Schools of Medicine
United States
Zip Code
Trimmer, Casey; Bonuccelli, Gloria; Katiyar, Sanjay et al. (2013) Cav1 suppresses tumor growth and metastasis in a murine model of cutaneous SCC through modulation of MAPK/AP-1 activation. Am J Pathol 182:992-1004
Sotgia, Federica; Martinez-Outschoorn, Ubaldo E; Howell, Anthony et al. (2012) Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 7:423-67
Capozza, Franco; Trimmer, Casey; Castello-Cros, Remedios et al. (2012) Genetic ablation of Cav1 differentially affects melanoma tumor growth and metastasis in mice: role of Cav1 in Shh heterotypic signaling and transendothelial migration. Cancer Res 72:2262-74
Witkiewicz, Agnieszka K; Whitaker-Menezes, Diana; Dasgupta, Abhijit et al. (2012) Using the "reverse Warburg effect" to identify high-risk breast cancer patients: stromal MCT4 predicts poor clinical outcome in triple-negative breast cancers. Cell Cycle 11:1108-17
Ertel, Adam; Tsirigos, Aristotelis; Whitaker-Menezes, Diana et al. (2012) Is cancer a metabolic rebellion against host aging? In the quest for immortality, tumor cells try to save themselves by boosting mitochondrial metabolism. Cell Cycle 11:253-63
Sotgia, Federica; Whitaker-Menezes, Diana; Martinez-Outschoorn, Ubaldo E et al. (2012) Mitochondrial metabolism in cancer metastasis: visualizing tumor cell mitochondria and the "reverse Warburg effect" in positive lymph node tissue. Cell Cycle 11:1445-54
Pavlides, Stephanos; Vera, Iset; Gandara, Ricardo et al. (2012) Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal 16:1264-84
Salem, Ahmed F; Bonuccelli, Gloria; Bevilacqua, Generoso et al. (2011) Caveolin-1 promotes pancreatic cancer cell differentiation and restores membranous E-cadherin via suppression of the epithelial-mesenchymal transition. Cell Cycle 10:3692-700
Balliet, Renee M; Capparelli, Claudia; Guido, Carmela et al. (2011) Mitochondrial oxidative stress in cancer-associated fibroblasts drives lactate production, promoting breast cancer tumor growth: understanding the aging and cancer connection. Cell Cycle 10:4065-73
Sotgia, Federica; Martinez-Outschoorn, Ubaldo E; Pavlides, Stephanos et al. (2011) Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Breast Cancer Res 13:213

Showing the most recent 10 out of 63 publications