Pol-? catalyzes replication of the genome and other DNA synthetic processes in human cells. However, the precise functions of Pol-? in replication, in repair of endogenous and environmental damage, and in recombination remain to be defined. Further, we lack information on the role of somatic mutations in Pol-? in tumorigenesis and other disease processes. Our goals are to identify the functions of Pol-? in DNA synthesis and the possible role of increased mutation by Pol-? in the generation of human cancer. A major approach will be to exploit mutants of Pol-? that incorporate mutagenic nucleotide analogs and thereby serve as tools to identify DNA synthesized by Pol-? in vivo. We have four specific aims.
In Aim 1, we will generate mutants of Pol-? that increase incorporation of a specific nucleotide analog(s).
In Aim 2, we will purify wild-type and mutant Pol-? holoenzyme complexes and characterize their catalytic properties in detail, including their fidelity and kinetics of analog incorporation.
In Aim 3, we will define the roles of Pol-? in mammalian cells by introducing mutant Pol-?'s that preferentially incorporate mutagenic nucleotide analogs and measuring induced mutation in cells undergoing DNA replication, repair and recombination. The induced mutations will identify the DNA synthesized by Pol-?.
In Aim 4, we will assess the role of increased mutagenesis in tumor progression by performing serial transfer experiments to determine if mammalian cells that harbor mutator Pol-? have a competitive advantage, and if there are nucleoside analogs that diminish this advantage. Narrative Our objective is to establish the roles of DNA polymerase-? in replication of the human genome and in repair of damage caused by endogenous and environmental agents. We will determine if mutations in DNA polymerase-? promote genetic instability and accelerate tumor progression in model systems.
We aim to identify a new class of chemotherapeutic agents that will retard tumor growth.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Cancer Etiology Study Section (CE)
Program Officer
Okano, Paul
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Medicine
United States
Zip Code
Beckman, Robert A; Loeb, Lawrence A (2017) Evolutionary dynamics and significance of multiple subclonal mutations in cancer. DNA Repair (Amst) 56:7-15
Fox, Edward J; Reid-Bayliss, Kate S; Emond, Mary J et al. (2014) Accuracy of Next Generation Sequencing Platforms. Next Gener Seq Appl 1:
Fox, Edward J; Loeb, Lawrence A (2014) Cancer: One cell at a time. Nature 512:143-4
Kennedy, Scott R; Schmitt, Michael W; Fox, Edward J et al. (2014) Detecting ultralow-frequency mutations by Duplex Sequencing. Nat Protoc 9:2586-606
Shen, Jiang-Cheng; Fox, Edward J; Ahn, Eun Hyun et al. (2014) A rapid assay for measuring nucleotide excision repair by oligonucleotide retrieval. Sci Rep 4:4894
Weedon, Michael N; Ellard, Sian; Prindle, Marc J et al. (2013) An in-frame deletion at the polymerase active site of POLD1 causes a multisystem disorder with lipodystrophy. Nat Genet 45:947-50
Kennedy, Scott R; Salk, Jesse J; Schmitt, Michael W et al. (2013) Ultra-sensitive sequencing reveals an age-related increase in somatic mitochondrial mutations that are inconsistent with oxidative damage. PLoS Genet 9:e1003794
Fox, Edward J; Prindle, Marc J; Loeb, Lawrence A (2013) Do mutator mutations fuel tumorigenesis? Cancer Metastasis Rev 32:353-61
Prindle, Marc J; Schmitt, Michael W; Parmeggiani, Fabio et al. (2013) A substitution in the fingers domain of DNA polymerase ? reduces fidelity by altering nucleotide discrimination in the catalytic site. J Biol Chem 288:5572-80
Prindle, Marc J; Loeb, Lawrence A (2012) DNA polymerase delta in DNA replication and genome maintenance. Environ Mol Mutagen 53:666-82

Showing the most recent 10 out of 48 publications