Kaposi's sarcoma herpesvirus (KSHV) causes Kaposi's sarcoma (KS) and two lymphoproliferative disorders: primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). The risk for KS is greatly increased in HIV-infected individuals and this is the most common malignancy in several countries in subequatorial Africa. KS is largely incurable with current therapeutic options. While KS is caused by KSHV, no effective virus-specific therapies exist. A better understanding of the pathobiology of KSHV infection, and robust animal models are essential for developing preventive and therapeutic strategies. Current animal models rely on expression of single viral genes in broad cellular populations, use of related animal viruses (none of which lead to KS or PEL-like disease), xenografts consisting of human tumor cells injected into immunodeficient mice, infection of humanized mice (with no resulting pathology), or implantation of cells previously infected or transfected in vitro. All of these animal models have significant limitation. Therefore, the goal of this project is to generate better mouse models to evaluate the effect of KSHV latent viral genes in vivo when selectively expressed in the specific cellular compartments that comprise the tumor cells in PEL and KS, namely B cells and endothelial cells. The majority of the cells in KSHV-associated tumors express only a few latent viral genes, although a very small and variable number of cells may also express some lytic genes. Conditional knock-in mice expressing the latent viral gene vFLIP in two different B cell subsets, all CD19+ cells or germinal center B cells, develop lymphadenopathies with features of MCD and tumors of B cell origin with long latency. We propose to extend these studies through the following specific aims: 1) discover complementing cellular and viral genetic events in vFLIP-mediated lymphomagenesis;2) develop and characterize mice expressing inducible vFLIP in endothelial cells;and 3) determine the effect of expression of the entire KSHV latency locus in endothelial cells, and assess the contribution of vGPCR expression in rare scattered cells. Through these aims, we anticipate developing mouse models that resemble human disease, which will be useful for a deeper understanding of the mechanisms of KSHV pathogenesis, and testing novel therapeutic approaches.

Public Health Relevance

The Kaposi's sarcoma herpesvirus (KSHV;also called human herpesvirus 8 or HHV-8), causes several types of cancer, including Kaposi's sarcoma, the most common cancer in several countries in Africa and more likely to occur in individuals with AIDS. KSHV does not infect mice, and all current mouse models have their limitations. We will develop new mouse models by expressing relevant viral products in specific cellular compartments, which will be useful to understand disease pathogenesis and develop new treatments.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA103646-07
Application #
8539744
Study Section
Special Emphasis Panel (ZRG1-AARR-K (02))
Program Officer
Read-Connole, Elizabeth Lee
Project Start
2003-07-01
Project End
2017-06-30
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
7
Fiscal Year
2013
Total Cost
$308,788
Indirect Cost
$126,073
Name
Weill Medical College of Cornell University
Department
Pathology
Type
Schools of Medicine
DUNS #
060217502
City
New York
State
NY
Country
United States
Zip Code
10065
Cesarman, Ethel (2014) How do viruses trick B cells into becoming lymphomas? Curr Opin Hematol 21:358-68
Byun, Minji; Ma, Cindy S; Akcay, Arzu et al. (2013) Inherited human OX40 deficiency underlying classic Kaposi sarcoma of childhood. J Exp Med 210:1743-59
Cesarman, Ethel (2013) Pathology of lymphoma in HIV. Curr Opin Oncol 25:487-94
Sun, Shao-Cong; Cesarman, Ethel (2011) NF-?B as a target for oncogenic viruses. Curr Top Microbiol Immunol 349:197-244
Ballon, Gianna; Chen, Kang; Perez, Rocio et al. (2011) Kaposi sarcoma herpesvirus (KSHV) vFLIP oncoprotein induces B cell transdifferentiation and tumorigenesis in mice. J Clin Invest 121:1141-53
Carbone, Antonino; Cesarman, Ethel; Gloghini, Annunziata et al. (2010) Understanding pathogenetic aspects and clinical presentation of primary effusion lymphoma through its derived cell lines. AIDS 24:479-90
Cesarman, E; Mesri, E A (2007) Kaposi sarcoma-associated herpesvirus and other viruses in human lymphomagenesis. Curr Top Microbiol Immunol 312:263-87
Cesarman, Ethel; Mesri, Enrique A (2006) Pathogenesis of viral lymphomas. Cancer Treat Res 131:49-88
Guasparri, Ilaria; Wu, Hao; Cesarman, Ethel (2006) The KSHV oncoprotein vFLIP contains a TRAF-interacting motif and requires TRAF2 and TRAF3 for signalling. EMBO Rep 7:114-9