Growth is the process through which cells accumulate mass and increase in size. mTORC1 is a protein kinase composed of the mTOR catalytic subunit and the associated proteins raptor, mLST8/G?L, and PRAS40, and the central component of a signaling network that regulates growth in response to growth factors, energy levels, amino acids, and stress. Many cancer-promoting lesions activate the mTORC1 pathway. Most notably, the TSC1-TSC2 tumor suppressor complex--whose inactivation causes Tuberous Sclerosis Complex (TSC) and the related disease Lymphangioleiomyomatosis (LAM)--is a major negative regulator of mTORC1. The TSC1-TSC2 heterodimer is a GTPase activating protein (GAP) that inhibits Rheb, a GTP-binding protein that directly binds and activates mTORC1. mTORC1 deregulation also occurs in cancer cells that have lost the PTEN, NF1, LKB1, or p53 tumor suppressors. The TSC1/TSC2/Rheb axis signals insulin and energy levels but not amino acids to mTORC1, suggesting that an amino acid-induced pathway upstream of mTORC1 remains unknown. We propose to understand how the mTORC1 pathway senses amino acids. First, we will determine the molecular mechanisms through which novel regulators of mTORC1 that we have identified in our preliminary studies signal amino acids to mTORC1. Second, by exploiting the results of RNAi and proteomics screens as well as candidate-molecule approaches, we will identify and understand the regulatory steps upstream of these novel regulators. Third, using conditional null alleles of the genes encoding the novel regulators we will understand their roles in vivo in controlling mTORC1 activity and organ growth. We will accomplish our goals with a multi-disciplinary approach that exploits the tools of biochemistry, molecular biology, proteomics, high-throughput RNAi screening, and mouse models. Our results are likely to have important consequences for our understanding of the clinically important mTORC1 pathway. Knowledge of how amino acids signal to mTORC1 is necessary to test if these mechanisms are deranged in human cancers, as are known upstream components of the mTORC1 pathway. Furthermore, some of the signaling mechanisms we uncover may serve in the future as targets for drug development.

Public Health Relevance

Growth is the process through which cells and organisms accumulate mass and increase in size. Over the last few years it has become apparent that this basic biological process is deregulated in common human diseases, most notably in cancer and diabetes. In this proposal we will study one of the key growth regulators in human beings, a multi-protein complex called mTORC1. We propose to elucidate the molecular mechanisms that activate mTORC1 in response to environmental amino acid levels, as well as use mouse models to understand how these mechanisms control organ growth in vivo. The overarching goal of our proposed work is to increase the molecular understanding of the mTORC1 pathway so as to enable the oncology community to rationally exploit mTORC1 in the treatment of cancer. We anticipate that our work will elucidate molecular mechanisms that may be deranged in human cancers and thus may serve as targets for future drug development.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Cellular Signaling and Regulatory Systems Study Section (CSRS)
Program Officer
Spalholz, Barbara A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Whitehead Institute for Biomedical Research
United States
Zip Code
Shaul, Yoav D; Freinkman, Elizaveta; Comb, William C et al. (2014) Dihydropyrimidine accumulation is required for the epithelial-mesenchymal transition. Cell 158:1094-109
Birsoy, K?vanç; Possemato, Richard; Lorbeer, Franziska K et al. (2014) Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508:108-12
Grabiner, Brian C; Nardi, Valentina; Birsoy, K?vanc et al. (2014) A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov 4:554-63
Chantranupong, Lynne; Wolfson, Rachel L; Orozco, Jose M et al. (2014) The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 9:1-8
Chen, Walter W; Birsoy, K?vanç; Mihaylova, Maria M et al. (2014) Inhibition of ATPIF1 ameliorates severe mitochondrial respiratory chain dysfunction in mammalian cells. Cell Rep 7:27-34
Bar-Peled, Liron; Sabatini, David M (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24:400-6
Wang, Tim; Wei, Jenny J; Sabatini, David M et al. (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:80-4
Efeyan, Alejo; Schweitzer, Lawrence D; Bilate, Angelina M et al. (2014) RagA, but not RagB, is essential for embryonic development and adult mice. Dev Cell 29:321-9
Mihaylova, Maria M; Sabatini, David M; Yilmaz, Ömer H (2014) Dietary and metabolic control of stem cell function in physiology and cancer. Cell Stem Cell 14:292-305
Laplante, Mathieu; Sabatini, David M (2013) Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 126:1713-9

Showing the most recent 10 out of 48 publications