This revised competing renewal application of NIH RO1-CA111422: """"""""Cyclin D as a Retinoid Differentiation Molecular Target"""""""" continues in depth studies of the important role of cyclin D1 as a major target of all-trans- retinoic acid (RA, retinoid) response by now examining how this is also a target of the hedgehog (Hh) pathway, also retinoid regulated, but in a previously unrecognized manner critical for differentiation and self- renewal of germ cell tumors (GCTs), the malignant counterparts of human embryonal stem (ES) cells. Intriguingly, our studies uncovered a unique retinoid response: induction of the Patched-1 (Ptch1) receptor which drives loss of self-renewal and regulates differentiation. Ptch1 is a target gene of the Hh pathway and is used as a read-out of Hh activation. The hypothesis explored is RA represses Hh signaling by a novel mechanism, Ptch1 induction, independent of smoothened (Smo), the only recognized target of Hh inhibitors, such as cyclopamine. Recognizing importance of this came from mining gene profiling studies successfully used by our team to identify unique retinoid targets in embryonal cancers (ECs). This proposal explores a distinct pharmacologic mechanism regulating self-renewal of ECs and likely other tumors. We are eager to pursue the Specific Aims that: (1) discover whether RA induction of Ptch1 is a general mechanism engaged by EC cells independent of Smo and if this is a common pathway of agents that trigger terminal differentiation of pluripotent EC cells;(2) probe the functional importance of this pathway by gain and loss of Ptch1 expression studies that affect Hh targets and regulate apoptosis, self-renewal or differentiation response;and (3) elucidate in vivo and clinical relevancy by learning whether RA induces Ptch1 in ES cells (or other cancer or stem cells) as well as in Ptch1 reporter mice and by confirming Ptch1 and its targets are differentially expressed in a unique tumor bank enabling comprehensive analyses of differentiated (mature teratoma) versus undifferentiated (EC) GCTs. This has successfully uncovered D-type cyclins as key regulators of human EC growth, chemotherapy response and differentiation. These unique in vitro, in vivo, and clinical resources with pharmacologic, cell and molecular biologic approaches will provide critical insights into the Hh pathway in regulating apoptosis, self-renewal or differentiation of GCT or other tumors.

Public Health Relevance

This project studies how all-trans-retinoic acid, an FDA approved Vitamin A derivative, causes repression of the hedgehog pathway through a previously unrecognized mechanism that induces its receptor, Patched. This mechanism is active in embryonal cancers and stem cells. This project is relevant to embryonal cancer cells, the malignant counterpart of normal stem cells and successful conclusion of this project will provide insights into the retinoid role of targeting the hedgehog pathway in cancer to suppress self-renewal or growth and induce apoptosis or differentiation in these cells.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
7R01CA111422-10
Application #
8880670
Study Section
Basic Mechanisms of Cancer Therapeutics Study Section (BMCT)
Program Officer
Arya, Suresh
Project Start
2004-12-01
Project End
2014-11-30
Budget Start
2014-08-01
Budget End
2014-11-30
Support Year
10
Fiscal Year
2014
Total Cost
$68,800
Indirect Cost
$25,800
Name
University of Texas MD Anderson Cancer Center
Department
Type
Other Domestic Higher Education
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Uray, Iván P; Dmitrovsky, Ethan; Brown, Powel H (2016) Retinoids and rexinoids in cancer prevention: from laboratory to clinic. Semin Oncol 43:49-64
Busch, Alexander M; Galimberti, Fabrizio; Nehls, Kristen E et al. (2014) All-trans-retinoic acid antagonizes the Hedgehog pathway by inducing patched. Cancer Biol Ther 15:463-72
Ma, Tian; Lopez-Aguiar, Alexandra G N; Li, Aihua et al. (2014) Mice lacking G0S2 are lean and cold-tolerant. Cancer Biol Ther 15:643-50
Ma, Tian; Galimberti, Fabrizio; Erkmen, Cherie P et al. (2013) Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther 12:1545-55
Busch, Alexander M; Johnson, Kevin C; Stan, Radu V et al. (2013) Evidence for tankyrases as antineoplastic targets in lung cancer. BMC Cancer 13:211
Rodriguez-Blanco, J; Schilling, N S; Tokhunts, R et al. (2013) The hedgehog processing pathway is required for NSCLC growth and survival. Oncogene 32:2335-45
Ma, Tian; Dong, Jessica P; Sekula, David J et al. (2013) Repression of exogenous gene expression by the retinoic acid target gene G0S2. Int J Oncol 42:1743-53
Guo, Yongli; Chinyengetere, Fadzai; Dolinko, Andrey V et al. (2012) Evidence for the ubiquitin protease UBP43 as an antineoplastic target. Mol Cancer Ther 11:1968-77
Galimberti, Fabrizio; Busch, Alexander M; Chinyengetere, Fadzai et al. (2012) Response to inhibition of smoothened in diverse epithelial cancer cells that lack smoothened or patched 1 mutations. Int J Oncol 41:1751-61
Ma, Tian; Fuld, Alexander D; Rigas, James R et al. (2012) A phase I trial and in vitro studies combining ABT-751 with carboplatin in previously treated non-small cell lung cancer patients. Chemotherapy 58:321-9

Showing the most recent 10 out of 38 publications