This competitive renewal application will continue examining the molecular mechanisms by which nickel compounds mediate lung carcinogenesis. In particular, this proposal seeks to identify the molecular mechanisms linking nickel-induced lung sustained inflammation to tumorigenicity of human bronchial epithelial cells (HBECs) in vitro and in vivo. Although there is an association between nickel- induced sustained airway inflammation and lung cancer development, the molecular mechanisms linking nickel exposure to the sustained lung chronic inflammation are not understood yet. The studies obtained from the last funding period and preliminary studies demonstrate that nickel exposure results in the activation of the nuclear factor-:B (NF:B), which in turn mediates COX-2 induction. Our studies also show that nickel exposure enables activation of AP-1, which in turn mediates TNF-1 induction. Furthermore, we find that TNF-1 enables COX-2 induction through the NFAT-dependent pathway. In addition, we find that there is crosstalk between the NFAT and NF?B pathways during cellular response to nickel exposure. Thus, the main hypothesis of this renewal proposal is that the NFAT/ NF?B activation and the pro-inflammatory TNF-1 and COX-2 induction will form positive inflammatory feedback loops, which are responsible for the formation and maintenance of sustained chronic lung inflammation and the induction of lung epithelial cell tumorigenicity due to nickel exposure. We propose the following Specific Aims: 1), To test the hypothesis that the inflammatory positive feedback loops being formed by NF?B, NFAT, and TNF1 are responsible for the maintenance of sustained COX-2 induction due to nickel exposure in HBECs;2), To determine the role of the positive inflammatory feedback loops in the development of tumorigenicity induced by nickel exposure in HBECs.;3), To assess the central role of TNF-1 in nickel-induced chronic lung inflammation and its mechanisms in vivo. The overall goal of this proposal is to clarify the formation of positive inflammatory feedback loops among NFAT, NF?B, TNF-1 and COX-2, in nickel exposure both in vitro and in vivo, and to determine the role of the positive inflammatory feedback loops in nickel-induced HBECs'tumorigenicity, as well as the central role of TNF-1 in the maintenance of lung sustained chronic inflammation and lung carcinogenesis during nickel exposure in vivo. Success of the proposal will facilitate our understanding of the molecular mechanism(s) that lead to the formation and maintenance of a lung chronic inflammatory microenvironment, and its role in lung carcinogenesis due to nickel exposure. A better understanding of these issues may provide valuable information for the designing of more effective agents for the prevention and therapy of lung cancers. We believe that the proposed contribution of positive inflammatory feedback loop responsible for nickel-induced lung tumorigenicity is novel.

Public Health Relevance

The elucidation of the molecular mechanisms that are involved in the maintenance of the sustained lung chronic inflammatory microenvironment, a process with well-documented links to lung cancer development, will be of great significance in facilitating our understanding of lung cancer development and will provide valuable information that is urgently needed for designing more effective agents for prevention and therapy of lung cancers. The goal of this application is to test the hypothesis that there are certain positive feedback loop(s) among pro- inflammatory TNF-1 and COX-2 induction and NFAT/NF:B activation, which are responsible for the sustained activation of NFAT/ NF?B pathway leading to constitutive COX-2 overexpression, subsequently resulting in lung cancer development from chronic lung inflammation caused by nickel exposure. The overall goal of this proposal is to clarify the relationship among the activation of NFAT, NF?B and induction of TNF-1 and COX-2, in nickel-caused lung inflammatory environment, and to understand the molecular mechanisms implicated in the mediation of this inflammatory environment in lung cancer development both in vitro and in vivo.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Cancer Etiology Study Section (CE)
Program Officer
Johnson, Ronald L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
New York University
Public Health & Prev Medicine
Schools of Medicine
New York
United States
Zip Code
Jiang, Guosong; Wu, Amy D; Huang, Chao et al. (2016) Isorhapontigenin (ISO) Inhibits Invasive Bladder Cancer Formation In Vivo and Human Bladder Cancer Invasion In Vitro by Targeting STAT1/FOXO1 Axis. Cancer Prev Res (Phila) 9:567-80
Xu, Jiawei; Wang, Yulei; Hua, Xiaohui et al. (2016) Inhibition of PHLPP2/cyclin D1 protein translation contributes to the tumor suppressive effect of NFκB2 (p100). Oncotarget 7:34112-30
Zeng, Xingruo; Xu, Zhou; Gu, Jiayan et al. (2016) Induction of miR-137 by Isorhapontigenin (ISO) Directly Targets Sp1 Protein Translation and Mediates Its Anticancer Activity Both In Vitro and In Vivo. Mol Cancer Ther 15:512-22
Wang, Y; Xu, J; Gao, G et al. (2016) Tumor-suppressor NFκB2 p100 interacts with ERK2 and stabilizes PTEN mRNA via inhibition of miR-494. Oncogene 35:4080-90
Huang, Haishan; Pan, Xiaofu; Jin, Honglei et al. (2015) PHLPP2 Downregulation Contributes to Lung Carcinogenesis Following B[a]P/B[a]PDE Exposure. Clin Cancer Res 21:3783-93
Zhang, Dongyun; Liang, Yuguang; Xie, Qipeng et al. (2015) A novel post-translational modification of nucleolin, SUMOylation at Lys-294, mediates arsenite-induced cell death by regulating gadd45α mRNA stability. J Biol Chem 290:4784-800
Jin, Honglei; Yu, Yonghui; Hu, Young et al. (2015) Divergent behaviors and underlying mechanisms of cell migration and invasion in non-metastatic T24 and its metastatic derivative T24T bladder cancer cell lines. Oncotarget 6:522-36
Cao, Zipeng; Li, Xueyong; Li, Jingxia et al. (2014) X-linked inhibitor of apoptosis protein (XIAP) lacking RING domain localizes to the nuclear and promotes cancer cell anchorage-independent growth by targeting the E2F1/Cyclin E axis. Oncotarget 5:7126-37
Zhang, Ruowen; Wang, Yulei; Li, Jingxia et al. (2014) The Chinese herb isolate yuanhuacine (YHL-14) induces G2/M arrest in human cancer cells by up-regulating p21 protein expression through an p53 protein-independent cascade. J Biol Chem 289:6394-403
Zhang, Dongyun; Wang, Yulei; Liang, Yuguang et al. (2014) Loss of p27 upregulates MnSOD in a STAT3-dependent manner, disrupts intracellular redox activity and enhances cell migration. J Cell Sci 127:2920-33

Showing the most recent 10 out of 88 publications