Oncogenic tyrosine kinases have proven to be promising targets for the development of highly effective anticancer drugs. However HER family tyrosine kinase inhibitors (TKIs) show only limited activity against HER2-driven cancers despite effective inhibition of EGFR and HER2 in vivo. The reasons for this are unclear. Signaling in trans is a key feature of this multimember family and an abundance of work from our lab and others has shown that TKI sensitivity in these tumors is mediated through the critically important PI3K/Akt pathway, which is driven predominantly through trans-phosphorylation of the kinase-inactive HER3. We have now discovered that although TKIs suppress EGFR and HER2 phosphorylation effectively, phosphorylation of the trans-target HER3 recovers after a transient inhibition and continues to drive PI3K/Akt signaling. This appears to be due to a compensatory shift in the HER3 phosphorylation-dephosphorylation equilbrium steady state and is driven largely by redistribution of HER3 to the cell surface. Our overall goal is to understand the molecular mechanisms that underlie HER3 resistance and to re-evaluate the utility of HER TKIs in the treatment of HER2-driven cancers.
In aim 1 we propose to confirm the critical role of HER3 in tumor drug resistance by establishing a HER3 siRNA in vivo knock-down model. In addition to this proof-of- principle experiment, we will test several more readily translatable pharmacologic strategies to suppress HER3 signaling and overcome TKI resistance. The transient effects of current TKIs may be clinically relevant, since when used in a pulse dosing schedule preceding chemotherapy, we find that they have a previously unrealized chemosensitization potential. Preliminary data suggests that this chemosensitization is mediated through transient effects on tumor vasculature and possible enhanced tumor delivery of chemotherapeutics.
In aim 2 we propose to study this hypothesis using radiologic and histologic studies of tumor vascular perfusion, permeability, and drug delivery. If they are found to support the hypothesis, the radiologic modalities will be translatable to our ongoing clinical studies of pulse chemosensitization. In the third aim, we seek to determine the molecular mechanisms by which HER3 redistributes to the cell surface and overcomes initial suppression by TKIs. Preliminary evidence suggests that Akt-driven negative feedback signaling directly or indirectly regulates HER3 localization. All experimental evidence suggests that certain cancers are driven by HER family oncoproteins, yet HER family TKIs have failed to deliver the promise of this oncogene hypothesis. We believe this is due to the previously unrealized short-lived nature of their effects. Through the proposed research program, we plan to develop treatment strategies to optimally use current HER family TKIs as transient inhibitors, and to develop much more effective therapies that more durably inhibit HER family signaling.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA122216-04
Application #
7780086
Study Section
Basic Mechanisms of Cancer Therapeutics Study Section (BMCT)
Program Officer
Forry, Suzanne L
Project Start
2007-05-22
Project End
2012-03-31
Budget Start
2010-04-13
Budget End
2011-03-31
Support Year
4
Fiscal Year
2010
Total Cost
$253,936
Indirect Cost
Name
University of California San Francisco
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Campbell, Marcia R; Zhang, Hui; Ziaee, Shabnam et al. (2016) Effective treatment of HER2-amplified breast cancer by targeting HER3 and ?1 integrin. Breast Cancer Res Treat 155:431-40
Moasser, Mark M; Krop, Ian E (2015) The Evolving Landscape of HER2 Targeting in Breast Cancer. JAMA Oncol 1:1154-61
Amin, Dhara N; Ruiz-Saenz, Ana; Gulizia, Nathaniel et al. (2015) Chemical probing of HER2-amplified cancer cells identifies TORC2 as a particularly effective secondary target for combination with lapatinib. Oncotarget 6:41123-33
Campbell, Marcia R; Moasser, Mark M (2015) HER Targeting in HER2-Negative Breast Cancers: Looking for the HER3 Positive. Clin Cancer Res 21:2886-8
Amin, Dhara N; Ahuja, Deepika; Yaswen, Paul et al. (2015) A TORC2-Akt Feed-Forward Topology Underlies HER3 Resiliency in HER2-Amplified Cancers. Mol Cancer Ther 14:2805-17
Ruiz-Saenz, A; Sandhu, M; Carrasco, Y et al. (2015) Targeting HER3 by interfering with its Sec61-mediated cotranslational insertion into the endoplasmic reticulum. Oncogene 34:5288-94
Moasser, Mark M (2014) Two dimensions in targeting HER2. J Clin Oncol 32:2074-7
Littlefield, Peter; Moasser, Mark M; Jura, Natalia (2014) RETRACTED: An ATP-competitive inhibitor modulates the allosteric function of the HER3 pseudokinase. Chem Biol 21:453-458
Amin, Dhara N; Sergina, Natalia; Lim, Lionel et al. (2012) HER3 signalling is regulated through a multitude of redundant mechanisms in HER2-driven tumour cells. Biochem J 447:417-25
Campbell, Marcia R; Amin, Dhara; Moasser, Mark M (2010) HER3 comes of age: new insights into its functions and role in signaling, tumor biology, and cancer therapy. Clin Cancer Res 16:1373-83

Showing the most recent 10 out of 18 publications