Advances in hypofractionated radiotherapy techniques have shown promise in the treatment of cancers that are conventionally associated with high morbidity and poor local control (e.g. lung and liver cancer). The small number of high dose treatment fractions requires superior precision and accuracy in target delineation, conformal treatment planning, and target localization at the time of treatment. Advances in imaging for target identification, volumetric imaging capabilities at treatment, and temporal imaging technologies, increase the capability of identifying the tumor during simulation, planning, and delivery. The spatial registration of this information, which is critical to correlate the unique information from each image, is limited by the lacking ability to integrate all available information into one comprehensive model of the patient. Early experience with dynamic multi-organ anatomical models for deformable registration has lead to the hypothesis that deformation technologies will improve the quality of treatment and lead to clinically significant improvements in tumor control and reduced toxicity. While testing this hypothesis will require a comprehensive program of multi-institution clinical trials, these methods need to be established and evaluated prior to deployment in clinical studies. This proposal sets out three specific aims to assure that the technologies are ready for translation into the clinical context, specifically in the lung, liver, and pancreas.
In specific aim 1, dynamic multi-organ anatomical models will be developed and validated for the lung, liver, and pancreas. The accuracy of these models and linear interpolation between breathing states will be quantified. Heterogeneous material models will be optimized for the lung and liver. The influence of multi-organ deformable registration on the design and targeting of hypofractionated radiotherapy will be investigated in specific aim 2. The increase in accuracy of multi-modality treatment planning with deformable registration will be evaluated. The improvements in dosimetric accuracy with the inclusion of motion and deformation due to breathing will be quantified. The translation of this increase in accuracy into clinical dose effect models will be investigated.
Specific aim 3 evaluates the impact of deformable registration on documentation and accounting of dose in hypofractionated radiotherapy. The improvements in accuracy of image guidance using deformable registration will be assessed. The increase in accuracy of the documentation of accumulated dose over treatment will be investigated, as well as the translation of this improvement in dose effect models. The goal of this research is to improve the accuracy and reduce the uncertainty in radiation therapy. Through the use of dynamic multi-organ anatomical models the wealth of information obtained from advanced imaging techniques will be combined into one, clear, model of the patient. This enhanced patient model will allow improved accuracy in the design and implementation of treatment. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
1R01CA124714-01A2
Application #
7465782
Study Section
Radiation Therapeutics and Biology Study Section (RTB)
Program Officer
Deye, James
Project Start
2008-03-25
Project End
2012-02-29
Budget Start
2008-03-25
Budget End
2009-02-28
Support Year
1
Fiscal Year
2008
Total Cost
$195,012
Indirect Cost
Name
University Health Network
Department
Type
DUNS #
208469486
City
Toronto
State
ON
Country
Canada
Zip Code
M5 2-M9
McCulloch, Molly M; Muenz, Daniel G; Schipper, Matthew J et al. (2018) A simulation study to assess the potential impact of developing normal tissue complication probability models with accumulated dose. Adv Radiat Oncol 3:662-672
Velec, Michael; Moseley, Joanne L; Svensson, Stina et al. (2017) Validation of biomechanical deformable image registration in the abdomen, thorax, and pelvis in a commercial radiotherapy treatment planning system. Med Phys 44:3407-3417
Samavati, Navid; Velec, Michael; Brock, Kristy K (2016) Effect of deformable registration uncertainty on lung SBRT dose accumulation. Med Phys 43:233
Velec, Michael; Juang, Titania; Moseley, Joanne L et al. (2015) Utility and validation of biomechanical deformable image registration in low-contrast images. Pract Radiat Oncol 5:e401-8
Samavati, Navid; Velec, Michael; Brock, Kristy (2015) A hybrid biomechanical intensity based deformable image registration of lung 4DCT. Phys Med Biol 60:3359-73
Velec, Michael; Moseley, Joanne L; Brock, Kristy K (2014) Simplified strategies to determine the mean respiratory position for liver radiation therapy planning. Pract Radiat Oncol 4:160-166
Velec, Michael; Moseley, Joanne L; Dawson, Laura A et al. (2014) Dose escalated liver stereotactic body radiation therapy at the mean respiratory position. Int J Radiat Oncol Biol Phys 89:1121-1128
Velec, Michael; Moseley, Joanne L; Craig, Tim et al. (2012) Accumulated dose in liver stereotactic body radiotherapy: positioning, breathing, and deformation effects. Int J Radiat Oncol Biol Phys 83:1132-40
Niu, Carolyn J; Foltz, Warren D; Velec, Michael et al. (2012) A novel technique to enable experimental validation of deformable dose accumulation. Med Phys 39:765-76
Brock, Kristy K (2011) Imaging and image-guided radiation therapy in liver cancer. Semin Radiat Oncol 21:247-55

Showing the most recent 10 out of 17 publications