MM is characterized by widespread disease at diagnosis with the presence of multiple lytic lesions and disseminated involvement of the bone marrow (BM), implying that the progression of MM involves a continuous circulation of the MM cells in the peripheral blood and re-entrance into the BM. Chemokines play a central role in lymphocyte trafficking and homing, specifically the chemokine SDF-1, and its receptors, CXCR4 along with the recently identified receptor CXCR7. We hypothesize that modulation of the capacity of MM cells to reside in their microenvironment will change their biologic properties and induce sensitivity to apoptosis.
Specific Aim 1 : To identify mechanisms of homing of MM cells in response to the SDF-1/CXCR4 axis. We will test this aim by determining the long-term biological sequelae of inhibition of SDF-1-dependent homing of MM and its effect on tumor progression, determining the differences in kinetics of homing between MM cells and other BM microenvironment cells, identifying the downstream signaling pathways that regulate MM cells'homing in response to CXCR4 and CXCR7 in vitro and in vivo, and difference in signaling of these two receptors in MM, and identifying the role of other chemokine receptors and adhesion molecules in the regulation of homing.
Specific Aim 2 : To determine the in vitro and in vivo effects of the SDF-1/CXCR4 axis on adhesion and survival of MM cells by identifying the biological changes that occur in MM cells adherent to the BM microenvironment compared to those in the peripheral blood, identifying the interaction of SDF-1/CXCR4 with adhesion molecules namely VLA-4 and LFA-1, and identifying the effect of inhibition of CXCR4/CXCR7 and/or adhesion molecules on growth and survival of MM cells in vivo.
Specific Aim 3 : To identify mechanisms of egression/mobilization of MM cells in response to CXCR4/CXCR7 inhibition by determining the biological sequelae of mobilization of MM cells in response to inhibition of CXCR4, CXCR7, VLA-4 and MMP2/9 inhibitors, determining the difference in kinetics of mobilization of MM cells compared to other bone marrow cells, and determining whether MM cells mobilized out of the BM will be more sensitive to apoptosis by cytotoxic agents compared to malignant cells residing in the BM. Targeting trafficking will lead to a paradigm shift in therapeutic approaches in MM, where we will alter the capacity of MM cells to reside in their protective bone marrow microenvironment by inducing egression and preventing homing and adhesion, leading to increased sensitivity to apoptosis. Relevance to Public Health: The mechanisms of tumor progression in myeloma are not well understood. We will study the role of the chemokine SDF-1 and its receptors in the regulation of entry of myeloma cells into the bone marrow, their adhesion and their exit into the circulation. Targeting this process by mobilizing myeloma cells out of the marrow will lead to a higher sensitivity to killing of the cells with cytotoxic agents.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Research Project (R01)
Project #
Application #
Study Section
Tumor Microenvironment Study Section (TME)
Program Officer
Merritt, William D
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Zhang, Yu; Moschetta, Michele; Huynh, Daisy et al. (2014) Pyk2 promotes tumor progression in multiple myeloma. Blood 124:2675-86
Roccaro, Aldo M; Sacco, Antonio; Purschke, Werner G et al. (2014) SDF-1 inhibition targets the bone marrow niche for cancer therapy. Cell Rep 9:118-28
Liu, Yang; Quang, Phong; Braggio, Esteban et al. (2013) Novel tumor suppressor function of glucocorticoid-induced TNF receptor GITR in multiple myeloma. PLoS One 8:e66982
Agarwal, Amit; Ghobrial, Irene M (2013) Monoclonal gammopathy of undetermined significance and smoldering multiple myeloma: a review of the current understanding of epidemiology, biology, risk stratification, and management of myeloma precursor disease. Clin Cancer Res 19:985-94
Azab, Abdel Kareem; Hu, Jinsong; Quang, Phong et al. (2012) Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood 119:5782-94
Azab, Abdel Kareem; Quang, Phong; Azab, Feda et al. (2012) P-selectin glycoprotein ligand regulates the interaction of multiple myeloma cells with the bone marrow microenvironment. Blood 119:1468-78
Ghobrial, Irene M (2012) Myeloma as a model for the process of metastasis: implications for therapy. Blood 120:20-30
Weisberg, E; Azab, A K; Manley, P W et al. (2012) Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia 26:985-90
Reagan, Michaela R; Ghobrial, Irene M (2012) Multiple myeloma mesenchymal stem cells: characterization, origin, and tumor-promoting effects. Clin Cancer Res 18:342-9
Pitsillides, Costas M; Runnels, Judith M; Spencer, Joel A et al. (2011) Cell labeling approaches for fluorescence-based in vivo flow cytometry. Cytometry A 79:758-65

Showing the most recent 10 out of 17 publications