Integrin a3b1 is an extracellular matrix receptor that is expressed in many malignant tumors and has been shown to regulate cellular phenotypes associated with epithelial-to-mesenchymal transition (EMT), such as cell proliferation, survival, and invasion. Expression of matrix metalloproteinase MMP-9 is also linked to malignant tumor growth, where it promotes tumor angiogenesis and cell invasion. a3b1 induces MMP-9 in immortalized keratinocytes (MK cells) through post-transcriptional mRNA stability, and this regulation is acquired during cellular immortalization. However, the mechanisms and signaling pathways whereby a3b1 regulates MMP-9 mRNA stability and their roles in tumor growth and progression are unknown. The goal of the proposed research is to answer these questions by exploiting a panel of a3b1-expressing (i.e. a3 wild type) and a3b1- deficient (i.e., a3-null) MK variants that collectively represent different EMT stages: (1) non-immortalized keratinocytes are isolated from neonatal epidermis;(2) immortalized MK cells harbor a p53-null mutation;(2) transformed MK cells additionally express oncogenic RasV12. Loss of p53 and oncogenic Ras activation are common mutations in squamous cell and other carcinomas. Preliminary data from this model indicate that a3b1 and MMP-9 are required for in vivo tumor growth of MK cells, and identify candidate signaling pathways and mechanisms whereby a3b1 may control MMP-9 mRNA stability. The proposed studies will test the hypotheses that MMP-9 mRNA expression is controlled by specific a3b1-mediated signaling pathways that control mRNA stability, and that these mechanisms control tumor growth in vivo. A combination of molecular, genetic, and biochemical approaches will be used to identify mRNA regulatory elements that control a3b1- dependent mRNA stability, and to elucidate specific signaling pathways or integrin functions that are involved in a3b1-mediated MMP-9 mRNA stability. An in vivo tumorigenesis model will be used to investigate the role of a3b1-dependent regulation of MMP-9 for tumor growth. Finally, the human relevance of these observations will be investigated by testing for a3b1-dependent regulation of MMP-9 in several human carcinoma lines, and by assessing expression of a3b1 and MMP-9 in human tumor specimens.

Public Health Relevance

A key to the development of anti-cancer therapies is the identification of molecular targets that are required for tumor growth, progression, and metastasis. The proposed studies will identify novel molecular pathways that are turned on in cancer cells to promote malignant tumor growth and metastasis. These pathways may be exploitable as therapeutic targets.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA129637-04
Application #
8110520
Study Section
Tumor Progression and Metastasis Study Section (TPM)
Program Officer
Snyderwine, Elizabeth G
Project Start
2008-09-26
Project End
2013-07-31
Budget Start
2011-09-14
Budget End
2012-07-31
Support Year
4
Fiscal Year
2011
Total Cost
$85,592
Indirect Cost
Name
Albany Medical College
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
190592162
City
Albany
State
NY
Country
United States
Zip Code
12208
Longmate, Whitney; DiPersio, C Michael (2017) Beyond adhesion: emerging roles for integrins in control of the tumor microenvironment. F1000Res 6:1612
Longmate, Whitney M; Lyons, Scott P; Chittur, Sridar V et al. (2017) Suppression of integrin ?3?1 by ?9?1 in the epidermis controls the paracrine resolution of wound angiogenesis. J Cell Biol 216:1473-1488
DiPersio, C Michael; Zheng, Rui; Kenney, James et al. (2016) Integrin-mediated regulation of epidermal wound functions. Cell Tissue Res 365:467-82
Missan, Dara S; Mitchell, Kara; Subbaram, Sita et al. (2015) Integrin ?3?1 signaling through MEK/ERK determines alternative polyadenylation of the MMP-9 mRNA transcript in immortalized mouse keratinocytes. PLoS One 10:e0119539
Aggarwal, Anshu; Al-Rohil, Rami N; Batra, Anupam et al. (2014) Expression of integrin ?3?1 and cyclooxygenase-2 (COX2) are positively correlated in human breast cancer. BMC Cancer 14:459
Missan, Dara S; Chittur, Sridar V; DiPersio, C Michael (2014) Regulation of fibulin-2 gene expression by integrin ?3?1 contributes to the invasive phenotype of transformed keratinocytes. J Invest Dermatol 134:2418-2427
Subbaram, Sita; Lyons, Scott P; Svenson, Kimberly B et al. (2014) Integrin ?3?1 controls mRNA splicing that determines Cox-2 mRNA stability in breast cancer cells. J Cell Sci 127:1179-89
Longmate, Whitney M; Monichan, Ruby; Chu, Mon-Li et al. (2014) Reduced fibulin-2 contributes to loss of basement membrane integrity and skin blistering in mice lacking integrin ?3?1 in the epidermis. J Invest Dermatol 134:1609-1617
Subbaram, Sita; Dipersio, C Michael (2011) Integrin ?3?1 as a breast cancer target. Expert Opin Ther Targets 15:1197-210
Wang, X; Lu, H; Urvalek, A M et al. (2011) KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9. Oncogene 30:1901-11

Showing the most recent 10 out of 13 publications