Our recent studies have shown that increased KLF4 protein expression suppressed the growth of human pancreatic cancer, whereas knockdown of KLF4 expression did the opposite. Moreover, we have identified three KLF4 alternative splice variants and a point-mutant KLF4 in human pancreatic cancer cells. Experimentally enforced expression of one of the splice variant, KLF41, promoted tumor growth. However, the underlying mechanisms for the impact of altered KLF4 expression and function on pancreatic cancer pathogenesis are unclear. We postulate that genetic and epigenetic changes of KLF4 impact its tumor suppressor function and contribute to pancreatic cancer pathogenesis. To test our hypothesis, we propose the following three specific aims.
Specific Aim 1 will test the hypothesis that genetic and epigenetic alterations lead to altered KLF4 expression and function and affect pancreatic cancer clinical outcome. Genetic (mutation and LOH) and epigenetic (promoter hypermethylation and alternative splicing) changes of KLF4 and their clinical significance in pancreatic cancer pathogenesis will be determined.
Specific aim 2 will test the hypothesis that aberrant KLF4 expression and function promotes tumor growth and metastasis. Impacts of altered KLF4 expression and function on the malignant phenotype with a focus on angiogenic phenotype of human pancreatic cancer cells will be determine using in vitro and animal models.
Specific Aim 3 will test the hypothesis that altered KLF4 expression and function results in dysregulated Sp1 expression and the imbalanced expression and function of Sp1 and KLF4 leads to an increased expression of pro-angiogenic factors that are predominantly regulated by Sp1. Impacts of altered expression and function of KLF4 on the expression and function of Sp1 and its downstream molecules in human pancreatic cancer cells will be determined. These three specific aims are supported by our respective preliminary data and can be tested independently using our unique research resources, yet they are highly interrelated and support one another. We predict that completion of these studies will provide insightful information for the molecular genetic basis of pancreatic cancer pathogenesis and for identification of molecular targets to design effective therapeutic strategies. In the long term, our study also can lead to further investigation of the molecular mechanisms mediating disregulated KLF4 expression and function.

Public Health Relevance

KLF4 is a newly identified putative tumor suppressor in gastrointestinal cancers. However, the critical role of KLF4 signaling in human cancer development and progression in general and human pancreatic cancer in particular is unclear.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA129956-05
Application #
8329655
Study Section
Cancer Genetics Study Section (CG)
Program Officer
Ault, Grace S
Project Start
2008-09-01
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2012
Total Cost
$247,971
Indirect Cost
$86,951
Name
University of Texas MD Anderson Cancer Center
Department
Internal Medicine/Medicine
Type
Other Domestic Higher Education
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Guo, Kun; Cui, Jiujie; Quan, Ming et al. (2017) The Novel KLF4/MSI2 Signaling Pathway Regulates Growth and Metastasis of Pancreatic Cancer. Clin Cancer Res 23:687-696
Xie, Victoria K; Li, Zhiwei; Yan, Yongmin et al. (2017) DNA-Methyltransferase 1 Induces Dedifferentiation of Pancreatic Cancer Cells through Silencing of Krüppel-Like Factor 4 Expression. Clin Cancer Res 23:5585-5597
Sun, H; Peng, Z; Tang, H et al. (2017) Loss of KLF4 and consequential downregulation of Smad7 exacerbate oncogenic TGF-? signaling in and promote progression of hepatocellular carcinoma. Oncogene 36:2957-2968
Cui, J; Xia, T; Xie, D et al. (2016) HGF/Met and FOXM1 form a positive feedback loop and render pancreatic cancer cells resistance to Met inhibition and aggressive phenotypes. Oncogene 35:4708-18
Yan, Yongmin; Li, Zhiwei; Kong, Xiangyu et al. (2016) KLF4-Mediated Suppression of CD44 Signaling Negatively Impacts Pancreatic Cancer Stemness and Metastasis. Cancer Res 76:2419-31
Guo, Junli; Xie, Keping; Zheng, Shaojiang (2016) Molecular Biomarkers of Pancreatic Intraepithelial Neoplasia and Their Implications in Early Diagnosis and Therapeutic Intervention of Pancreatic Cancer. Int J Biol Sci 12:292-301
Wei, Daoyan; Wang, Liang; Yan, Yongmin et al. (2016) KLF4 Is Essential for Induction of Cellular Identity Change and Acinar-to-Ductal Reprogramming during Early Pancreatic Carcinogenesis. Cancer Cell 29:324-338
Sun, Hongcheng; Tang, Huamei; Xie, Dacheng et al. (2016) Krüppel-like Factor 4 Blocks Hepatocellular Carcinoma Dedifferentiation and Progression through Activation of Hepatocyte Nuclear Factor-6. Clin Cancer Res 22:502-12
Quan, Ming; Cui, Jiujie; Xia, Tian et al. (2015) Merlin/NF2 Suppresses Pancreatic Tumor Growth and Metastasis by Attenuating the FOXM1-Mediated Wnt/?-Catenin Signaling. Cancer Res 75:4778-4789
Li, Zhiwei; Jia, Zhiliang; Gao, Yong et al. (2015) Activation of vitamin D receptor signaling downregulates the expression of nuclear FOXM1 protein and suppresses pancreatic cancer cell stemness. Clin Cancer Res 21:844-53

Showing the most recent 10 out of 37 publications