Two hundred million people worldwide are affected by thyroid proliferative diseases (TPD), which include goiter, cancer and adenoma. Women are three times more susceptible than men and overall the incidence of thyroid dysfunction occurring in one in eight women is a sizable health issue. The thyroid is a vascularized tissue and one of the cellular mediators of neo-vasculature are bone marrow derived endothelial progenitor cells (CD31+, CD34+, VCAM+). BM-EPCs normally reside in the marrow but migrate to tissues in response to inflammation, injury or cancer and estradiol (E2) enhances this migration. We observed that estradiol (E2) enhances peripheral circulation and migration of BM-EPCs to tumor tissues, induces neo-vasculature and up regulates cell survival pathways, Akt and ERK, in an E2 dependent manner. These EPCs that migrate to tissues under the influence of E2 to induce vasculogenesis are novel targets of anti-estrogen therapy in TPD. We propose to test the activity of the anti-estrogen DIM in animal and cell culture models and in human patients using E2 regulated vasculogenesis and cell survival pathways, Akt and ERK, as targets of DIM action.
The aims are to: I. Examine estradiol induced neovasculature using a xenograft animal model with orthotopic implantation of N-Thy-ori3-1(differentiated), B-CPAP (undifferentiated), KAT50TS goiter cell lines in ovariectomized (OVX) Balb/c/nu/nu mice ? E2 supplementation ? DIM incorporated in the diet. II. Examine the regulation of the activation of Akt and ERK pathway in BM-EPC and TPD cells by E2-ER multiprotein complexes and the possible molecular intervention targets of DIM. III. Determine if oral administration of an absorption-enhanced formulation of DIM (Bioresponse DIM) achieves adequate thyroid tissue bioavailability and examine DIM levels in blood and urine of patients. IV. Examine the status of activated Akt/ERK ? DIM in thyroid tissue and define the profile of E2 responsive DIM mediated molecular changes in TPD by gene array analysis followed by validation at the expression level. This basic translational research is directed to reduce possible unnecessary surgery in TPD using bioactive food component, DIM, and determining the cellular and molecular basis of the gender bias of TPD.

Public Health Relevance

This translational research with a novel basic component is directed to reduce possible unnecessary surgery in thyroid proliferative diseases using bioactive food component, Diindolylmethane, DIM. Surgical tissues obtained will be used to analyze estrogen mediated functions that can shed light on the observed 3:1 gender bias in the incidence of this disease in women.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Research Project (R01)
Project #
5R01CA131946-05
Application #
8477001
Study Section
Integrative and Clinical Endocrinology and Reproduction Study Section (ICER)
Program Officer
Agelli, Maria
Project Start
2009-06-02
Project End
2014-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
5
Fiscal Year
2013
Total Cost
$300,826
Indirect Cost
$111,627
Name
New York Medical College
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
041907486
City
Valhalla
State
NY
Country
United States
Zip Code
10595
Hanly, Elyse K; Tuli, Neha Y; Bednarczyk, Robert B et al. (2016) Hyperactive ERK and persistent mTOR signaling characterize vemurafenib resistance in papillary thyroid cancer cells. Oncotarget 7:8676-87
Hanly, Elyse K; Darzynkiewicz, Zbigniew; Tiwari, Raj K (2015) Biguanides and targeted anti-cancer treatments. Genes Cancer 6:82-3
Hanly, Elyse K; Bednarczyk, Robert B; Tuli, Neha Y et al. (2015) mTOR inhibitors sensitize thyroid cancer cells to cytotoxic effect of vemurafenib. Oncotarget 6:39702-13
Rajoria, S; Hanly, E; Nicolini, A et al. (2014) Interlinking of hypoxia and estrogen in thyroid cancer progression. Curr Med Chem 21:1351-60
Hanly, Elyse K; Rajoria, Shilpi; Darzynkiewicz, Zbigniew et al. (2014) Disruption of mutated BRAF signaling modulates thyroid cancer phenotype. BMC Res Notes 7:187
Suriano, Robert; Rajoria, Shilpi; George, Andrea L et al. (2013) Follow-up analysis of a randomized phase III immunotherapeutic clinical trial on melanoma. Mol Clin Oncol 1:466-472
Suriano, Robert; Rajoria, Shilpi; L George, Andrea et al. (2013) Ex vivo derived primary melanoma cells: implications for immunotherapeutic vaccines. J Cancer 4:371-82
Kummer, Nicolas T; Nowicki, Theodore S; Azzi, Jean P et al. (2012) Arachidonate 5 lipoxygenase expression in papillary thyroid carcinoma promotes invasion via MMP-9 induction. J Cell Biochem 113:1998-2008
George, Andrea L; Rajoria, Shilpi; Suriano, Robert et al. (2012) Hypoxia and estrogen are functionally equivalent in breast cancer-endothelial cell interdependence. Mol Cancer 11:80
Shanmugam, Arulkumaran; Rajoria, Shilpi; George, Andrea L et al. (2012) Synthetic Toll like receptor-4 (TLR-4) agonist peptides as a novel class of adjuvants. PLoS One 7:e30839

Showing the most recent 10 out of 23 publications